leetcode305- Number of Islands II- hard

本文介绍了一种使用并查集解决动态增加陆地后计算岛屿数量的问题,具体包括算法思路解析、两种实现方式及代码示例。

A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand operation which turns the water at position (row, col) into a land. Given a list of positions to operate, count the number of islands after each addLand operation. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Example:

Given m = 3, n = 3positions = [[0,0], [0,1], [1,2], [2,1]].
Initially, the 2d grid grid is filled with water. (Assume 0 represents water and 1 represents land).

0 0 0
0 0 0
0 0 0

Operation #1: addLand(0, 0) turns the water at grid[0][0] into a land.

1 0 0
0 0 0   Number of islands = 1
0 0 0

Operation #2: addLand(0, 1) turns the water at grid[0][1] into a land.

1 1 0
0 0 0   Number of islands = 1
0 0 0

Operation #3: addLand(1, 2) turns the water at grid[1][2] into a land.

1 1 0
0 0 1   Number of islands = 2
0 0 0

Operation #4: addLand(2, 1) turns the water at grid[2][1] into a land.

1 1 0
0 0 1   Number of islands = 3
0 1 0

We return the result as an array: [1, 1, 2, 3]

Challenge:

Can you do it in time complexity O(k log mn), where k is the length of the positions?

 

算法:并查集UnionFind。1.每次遇到加上去的岛屿先把cnt++。2.检查这个岛屿四周是不是也是岛,如果是就Union。3.Union函数里让每次有效Union的时候cnt--即可。

细节:1.UnionFind的时候是改老大的father,不要只是改自己的father:fathers[find(i)] = find(j); 三个F。2.走四方向的时候记得检查边界。3. 2D展开为1D的时候记得算坐标是x*列数+y!而不是x*行数+y。

 

实现1. 写内部类UnionFind:

class Solution {

    private class UnionFind {
        private int[] fathers;
        private int count;
        
        public UnionFind(int capacity) {
            this.fathers = new int[capacity];
            for (int i = 0; i < fathers.length; i++) {
                fathers[i] = i;
            }
            this.count = 0;
        }

        public int find(int x) {
            if (fathers[x] == x) {
                return x;
            }
            return fathers[x] = find(fathers[x]);
        }

        public void union(int i, int j) {
            if (find(i) != find(j)) {
                // 注意这里要改老大而不是单单j, i
                fathers[find(j)] = find(i);
                count--;
            }
        }

        public void addCount() {
            count++;
        }

        public int getCount(){
            return count;
        }
    }

    public List<Integer> numIslands2(int m, int n, int[][] positions) {
        List<Integer> result = new ArrayList<Integer>();
        if (m <= 0 || n <= 0 || positions == null || positions.length == 0 || positions[0].length == 0) {
            return result;
        }
        int[] dx = {-1, 0, 1, 0};
        int[] dy = {0, -1, 0, 1};
        UnionFind uf = new UnionFind(m * n);
        boolean[][] grid = new boolean[m][n];
        for (int i = 0; i < positions.length; i++) {
            int x = positions[i][0];
            int y = positions[i][1];
            grid[x][y] = true;
            uf.addCount();
            for (int j = 0; j < 4; j++) {
                int newX = x + dx[j];
                int newY = y + dy[j];
                // 记得检查边界合格否
                if (isInBound(newX, newY, m, n) && grid[newX][newY]) {
                    uf.union(flatTo1D(x, y, n), flatTo1D(newX, newY, n));
                }
            }
            result.add(uf.getCount());
        }
        return result;
    }

    private boolean isInBound(int x, int y, int m, int n) {
        return x >= 0 && x < m && y >= 0 && y < n;    
    }
    
    // 算是x*列数+y!!而不是x*行数+y
    private int flatTo1D(int x, int y, int n) {
        return x * n + y;
    }

}

 

实现2. 用UnionFind关键函数:

class Solution {

    public List<Integer> numIslands2(int m, int n, int[][] positions) {
        List<Integer> result = new ArrayList<Integer>();
        if (m <= 0 || n <= 0 || positions == null || positions.length == 0 || positions[0].length == 0) {
            return result;
        }
        int[] dx = {-1, 0, 1, 0};
        int[] dy = {0, -1, 0, 1};
        boolean[][] grid = new boolean[m][n];
        int[] parents = new int[m * n];
        int cnt = 0;

        for (int i = 0; i < parents.length; i++) {
            parents[i] = i;
        }
        
        for (int i = 0; i < positions.length; i++) {
            int x = positions[i][0];
            int y = positions[i][1];
            grid[x][y] = true;
            cnt++;
            for (int j = 0; j < 4; j++) {
                int newX = x + dx[j];
                int newY = y + dy[j];
                // 记得检查边界合格否
                if (isInBound(newX, newY, m, n) && grid[newX][newY] 
                    && union(parents, flatTo1D(x, y, n), flatTo1D(newX, newY, n))) {
                    cnt--;
                }
            }
            result.add(cnt);
        }
        return result;
    }

    private int find(int[] parents, int x) {
        if (parents[x] == x) {
            return x;
        }
        return parents[x] = find(parents, parents[x]);
    }
    
    private boolean union(int[] parents, int i, int j) {
        if (find(parents, i) == find(parents, j)) {
            return false;
        }
        parents[find(parents, i)] = find(parents, j);
        return true;
    } 
    
    private boolean isInBound(int x, int y, int m, int n) {
        return x >= 0 && x < m && y >= 0 && y < n;    
    }
    
    // 算是x*列数+y!!而不是x*行数+y
    private int flatTo1D(int x, int y, int n) {
        return x * n + y;
    }

}

 

转载于:https://www.cnblogs.com/jasminemzy/p/7965654.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值