Codeforces Round #483 (Div. 2) D. XOR-pyramid

D. XOR-pyramid
time limit per test
2 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

For an array bb of length mm we define the function ff as

f(b)={b[1]if m=1f(b[1]b[2],b[2]b[3],,b[m1]b[m])otherwise,f(b)={b[1]if m=1f(b[1]⊕b[2],b[2]⊕b[3],…,b[m−1]⊕b[m])otherwise,

where ⊕ is bitwise exclusive OR.

For example, f(1,2,4,8)=f(12,24,48)=f(3,6,12)=f(36,612)=f(5,10)=f(510)=f(15)=15f(1,2,4,8)=f(1⊕2,2⊕4,4⊕8)=f(3,6,12)=f(3⊕6,6⊕12)=f(5,10)=f(5⊕10)=f(15)=15

You are given an array aa and a few queries. Each query is represented as two integers ll and rr. The answer is the maximum value of ffon all continuous subsegments of the array al,al+1,,aral,al+1,…,ar.

Input

The first line contains a single integer nn (1n50001≤n≤5000) — the length of aa.

The second line contains nn integers a1,a2,,ana1,a2,…,an (0ai23010≤ai≤230−1) — the elements of the array.

The third line contains a single integer qq (1q1000001≤q≤100000) — the number of queries.

Each of the next qq lines contains a query represented as two integers ll, rr (1lrn1≤l≤r≤n).

Output

Print qq lines — the answers for the queries.

Examples
input
Copy
3
8 4 1
2
2 3
1 2
output
Copy
5
12
input
Copy
6
1 2 4 8 16 32
4
1 6
2 5
3 4
1 2
output
Copy
60
30
12
3
Note

In first sample in both queries the maximum value of the function is reached on the subsegment that is equal to the whole segment.

In second sample, optimal segment for first query are [3,6][3,6], for second query — [2,5][2,5], for third — [3,4][3,4], for fourth — [1,2][1,2].

 

 这题就是在异或操作下的区间最大值。

 n《=5000 可以用区间DP做。

  dp[i][j] 表示长度为i 起始点是j 的区间最大值。

  

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 
 4 typedef long long LL ;
 5 const int maxn = 5e3 + 7;
 6 int dp[maxn][maxn];
 7 
 8 int main() {
 9     int n;
10     scanf("%d", &n );
11     for (int i = 1 ; i <= n ; i++)
12         scanf("%d", &dp[1][i]);
13     for (int i = 2 ; i <= n ; i++ )
14         for (int j = 1 ; j <= n - i + 1 ; j++)
15             dp[i][j] = dp[i - 1][j] ^ dp[i - 1][j + 1];
16     for (int i = 2 ; i <= n ; i++)
17         for (int j = 1 ; j <= n - i + 1 ; j++)
18             dp[i][j] = max(dp[i][j], max(dp[i - 1][j], dp[i - 1][j + 1]));
19     int q;
20     scanf("%d", &q);
21     while(q--) {
22         int x, y;
23         scanf("%d%d", &x, &y);
24         int len = y - x + 1;
25         printf("%d\n", dp[len][x]);
26     }
27     return 0;
28 }

 

转载于:https://www.cnblogs.com/qldabiaoge/p/9049908.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值