POJ 2533 Longest Ordered Subsequence(LIS模版题)

本文介绍了最长递增子序列(LIS)问题的两种解决方法:一种是O(N^2)的时间复杂度,另一种则是通过二分查找优化到O(NlogN)。这两种方法都用于寻找给定数列中最长递增子序列的长度。
Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 47465 Accepted: 21120

Description

A numeric sequence of  ai is ordered if  a1 <  a2 < ... <  aN. Let the subsequence of the given numeric sequence ( a1a2, ...,  aN) be any sequence ( ai1ai2, ...,  aiK), where 1 <=  i1 <  i2< ... <  iK <=  N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

 

 

题目链接:POJ 2533

LIS模版题,N2和N*logN两种写法

N2代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=1e3+10;
int arr[N],mx[N];
void init()
{
    CLR(arr,0);
    CLR(mx,0);
}
int main(void)
{
    int n,i,j,pre_len;
    while (~scanf("%d",&n))
    {
        init();
        for (i=1; i<=n; ++i)
            scanf("%d",&arr[i]);
        mx[1]=1;
        for (i=2; i<=n; ++i)
        {
            pre_len=0;
            for (j=1; j<i; ++j)
            {
                if(arr[j]<arr[i])//arr[i]可以接到arr[j]后面
                    if(mx[j]>pre_len)//接到一个具有最长LIS的后面。
                        pre_len=mx[j];
            }
            mx[i]=pre_len+1;
        }
        printf("%d\n",*max_element(mx+1,mx+1+n));
    }
    return 0;
}

 

 

NlogN代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<bitset>
#include<string>
#include<deque>
#include<stack>
#include<cmath>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define CLR(x,y) memset(x,y,sizeof(x))
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
typedef pair<int,int> pii;
typedef long long LL;
const double PI=acos(-1.0);
const int N=1e3+10;
int arr[N],d[N];
void init()
{
    CLR(arr,0);
    CLR(d,0);
}
int main(void)
{
    int n,i,j,mxlen;
    while (~scanf("%d",&n))
    {
        init();
        for (i=1; i<=n; ++i)
            scanf("%d",&arr[i]);

        mxlen=1;
        d[mxlen]=arr[mxlen];

        for (i=2; i<=n; ++i)
        {
            if(d[mxlen]<arr[i])
                d[++mxlen]=arr[i];//最好情况一直往后增长
            else
            {
                int pos=lower_bound(d,d+mxlen,arr[i])-d;//用二分找到一个下界可放置位置
                d[pos]=arr[i];
            }
        }
        printf("%d\n",mxlen);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/Blackops/p/5853673.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值