Description
设d(x)为x的约数个数,给定N、M,求 

Input
输入文件包含多组测试数据。
第一行,一个整数T,表示测试数据的组数。
接下来的T行,每行两个整数N、M。
Output
T行,每行一个整数,表示你所求的答案。
题解:
有一个小结论:
$d(ij)=\sum_{i|n}\sum_{j|n}[gcd(i,j)==1]$
原式 $= \sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)$
$\Rightarrow\sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{x|i}\sum_{y|j}[gcd(x,y)==1]$
$\Rightarrow\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x,y)==1]\sum_{x|i}\sum_{y|j}$
$\Rightarrow\sum_{x=1}^{n}\sum_{y=1}^{m}\left \lfloor \frac{n}{x}\right \rfloor\left \lfloor \frac{m}{x} \right \rfloor[gcd(x,y)==1]$
$\Rightarrow\sum_{x=1}^{n}\sum_{y=1}^{m}\left \lfloor \frac{n}{x}\right \rfloor\left \lfloor \frac{m}{x} \right \rfloor\sum_{d|x,d|y}\mu(d)$
$\Rightarrow\sum_{d=1}^{n}\mu(d)\sum_{d|x}\left \lfloor \frac{n}{x} \right \rfloor\sum_{d|y}\left \lfloor \frac{m}{y} \right \rfloor$
$\Rightarrow\sum_{d=1}^{n}\mu(d)\sum_{x=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\left \lfloor \frac{n}{xd} \right \rfloor\sum_{y=1}^{\left \lfloor \frac{m}{d} \right \rfloor}\left \lfloor \frac{m}{yd} \right \rfloor$
剩下的交给整除分块计算就好了.
最好提前预处理出来所有的前缀和.
#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define ll long long
#define maxn 100000
#define M 50002
using namespace std;
int cnt;
bool vis[maxn];
int prime[maxn], mu[maxn];
ll sumv[maxn],Ge[maxn];
ll Sum(int n)
{
int i,j;
ll re=0;
for(i=1;i<=n;i=j+1)
{
j=n/(n/i);
re+=(j-i+1)*(n/i);
}
return re;
}
void linear_shaker()
{
int i,j;
mu[1]=1;
for(i=2;i<=M;++i)
{
if(!vis[i]) prime[++cnt]=i, mu[i]=-1;
for(j=1;j<=cnt&&1ll*i*prime[j]<=M;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
break;
}
mu[i*prime[j]]=-mu[i];
}
}
for(i=1;i<=M;++i) sumv[i]=sumv[i-1]+mu[i];
for(i=1;i<=M;++i)
{
Ge[i]=Sum(i);
}
}
int main()
{
// setIO("input");
linear_shaker();
int T,n,m,i,j;
ll re;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
if(n>m) swap(n,m);
re=0;
for(i=1;i<=n;i=j+1)
{
j=min(n/(n/i), m/(m/i));
re+=(sumv[j]-sumv[i-1])*Ge[n/i]*Ge[m/i];
}
printf("%lld\n",re);
}
return 0;
}