Hadoop(12)-MapReduce框架原理-Hadoop序列化和源码追踪

本文详细介绍在Hadoop中自定义bean对象实现Writable接口进行序列化的步骤,包括实现接口、重写序列化与反序列化方法等,并通过案例演示如何统计手机号对应的总上行与下行流量。

1.什么是序列化

2.为什么要序列化

3.为什么不用Java的序列化

4.自定义bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。

具体实现bean对象序列化步骤如下7步:

1) 必须实现Writable接口

2) 反序列话时,需要反射调用无参构造方法,所以必须要有无参构造方法

3) 重写序列化方法write()

4) 重写反序列化方法readFields() 

5) 反序列化的顺序和序列化的顺序务必一致

6) 要想把结果显示在文件中,需要重写toString()方法

7) 如果将自定义的Bean放在key中传输,则必须要实现comparable接口.因为MapReduce的Shuffle过程要求对key必须能排序

 注:Hadoop的序列化只保存对象的指定属性数据,而Java保存的东西太多,显得太重,在传输和磁盘存储上,会造成资源的浪费和紧张

5. 序列化案例实操

如下文件,统计每一个手机号耗费的总上行流量、下行流量、总流量

1 13736230513 192.196.100.1 www.baidu.com 2481 24681 200
2 13846544121 192.196.100.2 264 0 200
3 13956435636 192.196.100.3 132 1512 200
4 13966251146 192.168.100.1 240 0 404
5 18271575951 192.168.100.2 www.baidu.com 1527 2106 200
6 84188413 192.168.100.3 www.baidu.com 4116 1432 200
7 13590439668 192.168.100.4 1116 954 200
8 15910133277 192.168.100.5 www.hao123.com 3156 2936 200
9 13729199489 192.168.100.6 240 0 200
10 13630577991 192.168.100.7 www.shouhu.com 6960 690 200
11 15043685818 192.168.100.8 www.baidu.com 3659 3538 200
12 15959002129 192.168.100.9 www.baidu.com 1938 180 500
13 13560439638 192.168.100.10 918 4938 200
14 13470253144 192.168.100.11 180 180 200
15 13682846555 192.168.100.12 www.qq.com 1938 2910 200
16 13992314666 192.168.100.13 www.gaga.com 3008 3720 200
17 13509468723 192.168.100.14 www.qinghua.com 7335 110349 404
18 18390173782 192.168.100.15 www.sogou.com 9531 2412 200
19 13975057813 192.168.100.16 www.baidu.com 11058 48243 200

FlowBean

package com.nty.writable;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * author nty
 * date time 2018-12-08 13:39
 */
//实现Writable接口
public class Flow implements Writable {


    private Long upflow;  //上行流量

    private Long downflow;  //下行流量

    private Long total;  //总流量

    public Long getUpflow() {
        return upflow;
    }

    public void setUpflow(Long upflow) {
        this.upflow = upflow;
    }

    public Long getDownflow() {
        return downflow;
    }

    public void setDownflow(Long downflow) {
        this.downflow = downflow;
    }

    public Long getTotal() {
        return total;
    }

    public void setTotal(Long total) {
        this.total = total;
    }

    /**
     * 快速赋值
     * @param upflow
     * @param downflow
     */
    public void setFlow(long upflow, long downflow){
        this.upflow = upflow;
        this.downflow = downflow;
        this.total = upflow + downflow;
    }

    //序列化方法
    public void write(DataOutput out) throws IOException {
        out.writeLong(upflow);
        out.writeLong(downflow);
        out.writeLong(total);
    }

    //反序列化方法,读取数据的顺序和序列化写值得顺序一致
    public void readFields(DataInput in) throws IOException {
        upflow = in.readLong();
        downflow = in.readLong();
        total = in.readLong();
    }

    @Override
    public String toString() {
        return upflow + "\t" + downflow + "\t" + total;
    }
}

Mapper类

package com.nty.writable;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * author nty
 * date time 2018-12-10 16:44
 */
//输入的K,V类型为偏移量和本行内容,输出的K,V类型为本行的手机号和Folw对象
public class FlowMapper extends Mapper<LongWritable, Text, Text, Flow> {

    private Flow flow = new Flow();
    private Text phone = new Text();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String[] fields = value.toString().split("\t");

        //设置输入的K为手机号
        phone.set(fields[1]);
        //设置Flow,用倒取的原因是因为,有些行数据没有访问地址
        flow.setFlow( Long.parseLong(fields[fields.length-3]), Long.parseLong(fields[fields.length-2]) );
        //将map后的结果输出给context
        context.write(phone,flow);
    }
}

Reducer类

package com.nty.writable;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * author nty
 * date time 2018-12-10 16:44
 */
//Reducer的输入K,V类型为Mapper的输出类型,即Text,Flow,输出K,V类型为手机号和Flow,即Text,Flow
public class FlowReducer extends Reducer<Text, Flow, Text, Flow> {
private Flow flow = new Flow();

    @Override
    protected void reduce(Text key, Iterable<Flow> values, Context context) throws IOException, InterruptedException {
        
    long upflow = 0;
    long downflow = 0;
//遍历values,计算总的下行流量和上行流量 for (Flow flow : values) { upflow += flow.getUpflow(); downflow += flow.getDownflow(); } //对象赋值 flow.setFlow(upflow, downflow); //写出 context.write(key, flow); } }

Driver类

package com.nty.writable;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * author nty
 * date time 2018-12-10 16:44
 */
public class FlowDriver {

    public static void main(String[] args) throws Exception {
        //获取配置信息和job
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        //设置jar类
        job.setJarByClass(FlowDriver.class);

        //设置Mapper和Reducer
        job.setMapperClass(FlowMapper.class);
        job.setReducerClass(FlowReducer.class);

        //设置Mapper的输出类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Flow.class);

        //设置Reduce的输出类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Flow.class);

        //设置文件的输入输出路径
        FileInputFormat.setInputPaths(job, new Path("d:\\Hadoop_test"));
        FileOutputFormat.setOutputPath(job, new Path("d:\\Hadoop_test_output"));

        //提交
        boolean res = job.waitForCompletion(true);

        System.exit(res ? 0 :1);

    }
}

 最终输出结果

13470253144    180    180    360
13509468723    7335    110349    117684
13560439638    918    4938    5856
13590439668    1116    954    2070
13630577991    6960    690    7650
13682846555    1938    2910    4848
13729199489    240    0    240
13736230513    2481    24681    27162
13846544121    264    0    264
13956435636    132    1512    1644
13966251146    240    0    240
13975057813    11058    48243    59301
13992314666    3008    3720    6728
15043685818    3659    3538    7197
15910133277    3156    2936    6092
15959002129    1938    180    2118
18271575951    1527    2106    3633
18390173782    9531    2412    11943
84188413    4116    1432    5548

 

6.序列化执行过程(源码)

map方法将flow对象write出去,框架接收到flow对象,进行序列化

 step into

 

这是key的序列化方法

再跳出看value的序列化

step into

最后value进入我们自己重写的序列化方法

 

转载于:https://www.cnblogs.com/duoduotouhenying/p/10098114.html

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值