给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数
求操作 \(k\) 次后 \(n\) 的期望是多少
\(f[i][j]\) 表示以某质数的 \(i\) 次方经过 \(j\) 次操作后的结果
发现答案是积性的 , 质因数分解后转移
\(f[n][k]∗f[m][k]=f[nm][k] (gcd(n,m)=1)\)
对于\(f[i][j]\)的转移 :
\(f[i][j]=\frac{1}{i+1}\sum_{k=0}^{i}f[k][j-1]\)
大胆猜测积性的性质 , 转化为质因数分解后求解
其实肯定要写出最基础的暴力才能发现一些性质 , 所以不管是什么题都要先把暴力打了再说 ; 积性函数这种猜想还是要打表证明一下
记忆化是一个神奇的东西
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#define inf 0x3f3f3f3f
#define int long long
#define p 1000000007
using namespace std;
int dp[62][10002];
inline int power(int a,int t);
int inv(int n);
int solve(int a,int i,int j);
signed main(){
int n,k,t,ans = 1;
scanf("%lld%lld",&n,&k);
for(int i=2;i*i<=n;++i){
if(n%i!=0) continue; //不是因数,跳过
t = 0;
while(n%i==0){
++t;
n /= i; //找到质因数,算幂次
}
memset(dp,0,sizeof(dp));
ans = (ans*solve(i,t,k))%p;
}
memset(dp,0,sizeof(dp));
if(n>1) ans = (ans*solve(n,1,k))%p; //最后可能剩下n>1,需要多算一遍
printf("%lld",ans);
return 0;
}
inline int power(int a,int t){
int res = 1;
while(t){
if(t&1) res = res*a%p;
a = a*a%p;
t >>= 1;
}
return res;
}
int inv(int n){
return power(n,1000000005);
}
int solve(int a,int i,int j){
if(i==0){
dp[i][j] = 1; //p^0为1,经过多少次操作还是1
return 1;
}
if(j==0){
//0次操作的情况,即为原数
if(dp[i][j]==0) dp[i][j]=power(a,i);
return dp[i][j];
}
int ans = 0;
for(int k=0;k<=i;++k){
//套用上面的式子
if(dp[k][j-1]==0) dp[k][j-1] = solve(a,k,j-1);
ans = (ans+dp[k][j-1])%p;
}
return ans*inv(i+1)%p;
}