CS Academy Gcd Rebuild

本文针对给定的矩阵,其中每个元素表示两数组元素的最大公约数,探讨如何找到这两个数组的具体值。通过观察发现了解题规律,并给出了具体的解题算法及代码实现。

题目链接https://csacademy.com/contest/archive/task/gcd-rebuild/statement/

题目大意:给出一个N*M的矩阵,其中第i行j列表示gcd(a[i], b[j]),现在不知道数组a,b,给出这个矩阵,求a,b。如果多组解,输出其中一组,若无解,输出-1.

解题思路:观察观察(真的是观察出来的),发现如果有解,那么可以按照如下方式构造解:

1 for(int i = 1; i <= n; i++){
2     ll tmp = 1, la;
3     for(int j = 1; j <= m; j++){
4         la = tmp;
5         tmp *= c[i][j];
6         tmp /= gcd(la, c[i][j]);
7     }
8     a[i] = tmp;
9 }

对于每一列也是同样的方式。构造之后判断一下是否符合条件即可。

代码:

 1 const int maxn = 3e2 + 5;
 2 int n, m;
 3 ll c[maxn][maxn];
 4 ll a[maxn], b[maxn];
 5 
 6 ll gcd(ll x, ll y){
 7     return y == 0? x: gcd(y, x % y);
 8 }
 9 void solve(){
10     for(int i = 0; i <= n; i++) c[i][0] = c[0][i] = 1;
11     bool flag = true;
12     for(int i = 1; i <= n; i++){
13         ll tmp = 1, la;
14         for(int j = 1; j <= m; j++){
15             la = tmp;
16             tmp *= c[i][j];
17             tmp /= gcd(la, c[i][j]);
18         }
19         a[i] = tmp;
20         if(a[i] > 1e9) {
21             flag = false;
22             break;
23         }
24     }
25     if(!flag){
26         puts("-1");
27         return;
28     }
29     for(int i = 1; i <= m; i++){
30         ll tmp = 1, la;
31         for(int j = 1; j <= n; j++){
32             la = tmp;
33             tmp *= c[j][i];
34             tmp /= gcd(c[j][i], la);
35         }
36         b[i] = tmp;
37         if(b[i] > 1e9) {
38             flag = false;
39             break;
40         }
41     }
42     if(!flag){
43         puts("-1");
44         return;
45     }
46     for(int i = 1; i <= n; i++){
47         for(int j = 1; j <= m; j++){
48             if(c[i][j] != gcd(a[i], b[j])){
49                 flag = false;
50                 break;
51             }
52         }
53         if(!flag) break;
54     }
55     if(!flag){
56         puts("-1");
57         return;
58     }
59     for(int i = 1; i <= n; i++) printf("%lld ", a[i]);
60     puts("");
61     for(int i = 1; i <= m; i++) printf("%lld ", b[i]);
62 }
63 int main(){
64     scanf("%d %d", &n, &m);
65     for(int i = 1; i <= n; i++){
66         for(int j = 1; j <= m; j++){
67             scanf("%lld", &c[i][j]);
68         }
69     }
70     solve();
71 }

题目:

Gcd Rebuild

Time limit:  1000 ms
Memory limit:  256 MB

 

Consider two arrays: VV of size NN and UU of size MM. The elements of both arrays are integers between 11 and 10^9109​​.

You are given a matrix AA where A_{i,j} = \gcd(V_i, U_j)Ai,j​​=gcd(Vi​​,Uj​​) and \gcdgcd refers to the greatest common divisor. You are asked to find VV and UU.

Standard input

The first line contains two integers NN and MM.

Each of the next NN lines contains MM integers, representing the elements of AA.

Standard output

If there is no solution, or you cannot find a solution where the elements of VV and UU are in the range [1, 10^9][1,109​​], output -11.

Otherwise, print the NN elements of VV on the first line and the MM elements of UU on the second line. If the solution is not unique you can output any of them.

Constraints and notes

  • 1 \leq N, M \leq 3001N,M30
  • 1 \leq A_{i, j} \leq 10^91Ai,j​​109​​ 
InputOutputExplanation
3 3
1 2 2
3 2 2
3 1 1
2 6 3 
3 2 2 

gcd(2, 3)=1gcd(2,3)=1

gcd(2, 2)=2gcd(2,2)=2

gcd(6, 3)=3gcd(6,3)=3

gcd(6, 2)=2gcd(6,2)=2

gcd(3, 3)=3gcd(3,3)=3

gcd(3, 2)=1gcd(3,2)=1

3 2
2 2
2 2
4 2
2 2 4 
4 2 

gcd(2, 2)=2gcd(2,2)=2

gcd(2, 4)=2gcd(2,4)=2

gcd(4, 4)=4gcd(4,4)=4

2 2
1 1
1 1
1 1 
1 1 

gcd(1, 1)=1gcd(1,1)=1

3 3
4 2 4
2 4 2
4 2 4
-1

There is no solution

转载于:https://www.cnblogs.com/bolderic/p/7500447.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值