Ural 1057. Amount of Degrees(数位DP)

本文详细介绍了如何使用数位DP解决一类特定的问题,通过实例解释了递推公式的建立和应用过程,提供了完整的代码示例及解析。

第二次做数位DP,做了好几个小时,我先哭一会 = =

hdu2089做法相似,不过细节要多考虑。

首先一个数如果为B的次方和,那么用B进制表示,符合要求的数一定是一串只有0和1的数字,并且1的个数为k。

dp[i][j] 表示i位数,首位为j的符合要求的数有多少个。

递推公式dp[i][j]=dp[i-1][j]+dp[i-1][j-1]。(第i位为0或为1)

利用dp对于一个N求[0,N)之间符合要求的数。

先把一个数化为B进制,长度为len;

对于某一位,如果该位的数字大于1,那么直接求dp[i-1][k]+dp[i-1][k-1]就是结果。

对于某一位如果为1,那么要加上该位为0的情况,dp[i-1][k-1]

如果为0,那么没有贡献,继续求下一位。

记录cnt为1的个数。

例如一个数4131(已化为b进制)

第一位是4,那么dp[3][k]+dp[3][k-1]就是结果

例如一个数1010

第一位为1,那么第一位为0的所有数都小于1014,求出dp[3][k],即0xxx中满足条件的数。

继续求1xxx中满足条件的数,因为已经确定一个数为1,这时求得的数中只需有k-1个1就可以了。

第二位0,继续。

第三位1,那么求第三位为0的,求100x,即dp[1][k-1]。

然后求101x,要有k-2个1.

最后一位0,结束。

#include <iostream>
#include <cmath>
using namespace std;

// 1≤X≤Y≤2^31−1  1≤K≤20 2≤B≤10
int x, y;
int k, b; // b进制 k个1

int dp[40][40]; // dp[i][j] i位数,一共有j个1,有多少种可能情况
// dp[i][j]=dp[i-1][j]+dp[i-1][j-1] --第i位可能为0或1
int d[40];

void init()
{
	dp[0][0] = 1;
	for (int i = 1; i <= 31; ++i) {
		for (int j = 0; j <= 31; ++j) {
			dp[i][j] = dp[i - 1][j] + dp[i - 1][j - 1];
		}
	}
}

int solve(int n)
{
	int len = 0;
	int ans = 0;
	while (n) {
		d[++len] = n % b;
		n /= b;
	}

	int cnt = 0; // 为1的位数
	for (int i = len; i >= 1; --i) {
		if (cnt == k) {
			if (d[i]) {
				++ans;
				break;
			}
		} else if (i == 1) {
			if (d[i] > 1 && cnt + 1 == k) ++ans;
			break;
		} else if (d[i] > 1) {
			ans += dp[i - 1][k - cnt - 1] + dp[i - 1][k - cnt];
			break;
		} else if (d[i] == 1) {
			ans += dp[i - 1][k - cnt];
			++cnt;
		}
	}

	return ans;
}


int main()
{
	init();
    while (cin >> x >> y >> k >> b) {
		cout << solve(y + 1) - solve(x) << endl;
    }
    return 0;
}

/**
Input:
15 20 2 2
1 300 4 8
111 211 3 10
90 100 2 3

Output:
3
0
1
1
**/

  

转载于:https://www.cnblogs.com/wenruo/p/4730234.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值