BNU29140——Taiko taiko——————【概率题、规律题】

本文介绍了一种简化版的太鼓达人游戏积分计算方法,针对不同击打序列和击中概率,通过数学公式计算玩家在给定长度的序列中获得积分的期望值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Taiko taiko

Time Limit: 1000ms
Memory Limit: 65536KB
64-bit integer IO format:  %lld      Java class name: Main
Type: 
None
 
  None   Graph Theory       2-SAT       Articulation/Bridge/Biconnected Component       Cycles/Topological Sorting/Strongly Connected Component       Shortest Path           Bellman Ford           Dijkstra/Floyd Warshall       Euler Trail/Circuit       Heavy-Light Decomposition       Minimum Spanning Tree       Stable Marriage Problem       Trees       Directed Minimum Spanning Tree       Flow/Matching           Graph Matching               Bipartite Matching               Hopcroft–Karp Bipartite Matching               Weighted Bipartite Matching/Hungarian Algorithm           Flow               Max Flow/Min Cut               Min Cost Max Flow   DFS-like       Backtracking with Pruning/Branch and Bound       Basic Recursion       IDA* Search       Parsing/Grammar       Breadth First Search/Depth First Search       Advanced Search Techniques           Binary Search/Bisection           Ternary Search   Geometry       Basic Geometry       Computational Geometry       Convex Hull       Pick's Theorem   Game Theory       Green Hackenbush/Colon Principle/Fusion Principle       Nim       Sprague-Grundy Number   Matrix       Gaussian Elimination       Matrix Exponentiation   Data Structures       Basic Data Structures       Binary Indexed Tree       Binary Search Tree       Hashing       Orthogonal Range Search       Range Minimum Query/Lowest Common Ancestor       Segment Tree/Interval Tree       Trie Tree       Sorting       Disjoint Set   String       Aho Corasick       Knuth-Morris-Pratt       Suffix Array/Suffix Tree   Math       Basic Math       Big Integer Arithmetic       Number Theory           Chinese Remainder Theorem           Extended Euclid           Inclusion/Exclusion           Modular Arithmetic       Combinatorics           Group Theory/Burnside's lemma           Counting       Probability/Expected Value   Others       Tricky       Hardest       Unusual       Brute Force       Implementation       Constructive Algorithms       Two Pointer       Bitmask       Beginner       Discrete Logarithm/Shank's Baby-step Giant-step Algorithm       Greedy       Divide and Conquer   Dynamic Programming                   Tag it!

拆拆超级喜欢太鼓达人(赛后大家可自行百度规则),玩久了也对积分规则产生了兴趣,理论上连击数越多,分数增加的越快,而且还配合着击打准确度有相应的计算规则,拆拆觉得这些规则太复杂了,于是把规则自行简化了下:

对于一段击打序列,我们假设Y为打中,N为未打中 (没有良可之分了)

我们视连续的n次击中为n连击  相应的分数为 1+2+3+。。。+n

例如序列YNNYYYNYN的总分数为1+1+2+3+1=8

当然 击中是有概率的 我们假定概率始终为P(0<=P<=1)拆拆的击中概率很高的恩恩=w=

于是现在拆拆想知道对于长度为L的序列  击中概率为P时 获得积分的期望是多少

 

Input

一个整数T(表示T组数据)

接下来的T组数据

接下来T行 每行一个整数L 一个浮点数P

数据范围

1<=T<=1000

1<=L<=1000

0<=P<=1

 

Output

对于每组数据输出一行1个6位小数 即题目描述的期望

 

Sample Input

2
2 0.9
3 0.5

Sample Output

2.610000
2.125000



解题思路:应该是有证明和推导的,但是好多人都是找规律找出来的,规律就是:1*pn+2*pn-1+...n*p。至于为啥这样,数学渣也表示很无语。

#include<bits/stdc++.h>
using namespace std;
int main(){

    int t;
    scanf("%d",&t);
    while(t--){

        int n;
        double p,ans=0,tmp;
        scanf("%d%lf",&n,&p);
        tmp=p;
        for(int i=n;i>0;i--){

            ans+=i*tmp;
            tmp*=p;
        }
        printf("%.6lf\n",ans);
    }
    return 0;
}

  






转载于:https://www.cnblogs.com/chengsheng/p/4397406.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值