Dark roads(kruskal)

本文针对Darkroads问题进行了详细的解析,并提出了一种通过计算所有道路总长度后减去最小生成树长度来获得最大节省成本的方法。该方法使用Kruskal算法进行最小生成树的构建。

Dark roads

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 7   Accepted Submission(s) : 2
Problem Description
Economic times these days are tough, even in Byteland. To reduce the operating costs, the government of Byteland has decided to optimize the road lighting. Till now every road was illuminated all night long, which costs 1 Bytelandian Dollar per meter and day. To save money, they decided to no longer illuminate every road, but to switch off the road lighting of some streets. To make sure that the inhabitants of Byteland still feel safe, they want to optimize the lighting in such a way, that after darkening some streets at night, there will still be at least one illuminated path from every junction in Byteland to every other junction.

What is the maximum daily amount of money the government of Byteland can save, without making their inhabitants feel unsafe?

 

 

Input
The input file contains several test cases. Each test case starts with two numbers m and n, the number of junctions in Byteland and the number of roads in Byteland, respectively. Input is terminated by m=n=0. Otherwise, 1 ≤ m ≤ 200000 and m-1 ≤ n ≤ 200000. Then follow n integer triples x, y, z specifying that there will be a bidirectional road between x and y with length z meters (0 ≤ x, y < m and x ≠ y). The graph specified by each test case is connected. The total length of all roads in each test case is less than 2[sup]31[/sup].
 

 

Output
For each test case print one line containing the maximum daily amount the government can save.
 

 

Sample Input
7 11 0 1 7 0 3 5 1 2 8 1 3 9 1 4 7 2 4 5 3 4 15 3 5 6 4 5 8 4 6 9 5 6 11 0 0
题解:就把总路径加起来,然后减去最小路径;刚开始用prime包内存;最后用kruscal竟然没超市
代码:
 1 #include<string.h>
 2 #include<stdio.h>
 3 #include<algorithm>
 4 using namespace std;
 5 const int MAXN=200010;
 6 struct Node{
 7         int s,e,dis;
 8 };
 9 Node dt[MAXN];
10 int cmp(Node a,Node b){
11     return a.dis<b.dis;
12 }
13 int pre[MAXN],mi,tot;
14 int find(int x){
15     int r=x;
16     while(r!=pre[r])r=pre[r];
17     int i=x,j;
18     while(i!=r)j=pre[i],pre[i]=r,i=j;
19     return r;
20 }
21 int merge(Node a){
22     int f1,f2;
23     if(pre[a.s]==-1)pre[a.s]=a.s;
24     if(pre[a.e]==-1)pre[a.e]=a.e;
25     f1=find(a.s);f2=find(a.e);
26     if(f1!=f2)pre[f1]=f2,mi+=a.dis;
27 }
28 int main(){
29     int N,M;
30     while(~scanf("%d%d",&N,&M),N||M){mi=tot=0;
31     memset(pre,-1,sizeof(pre));
32         for(int i=0;i<M;i++)scanf("%d%d%d",&dt[i].s,&dt[i].e,&dt[i].dis),tot+=dt[i].dis;
33         sort(dt,dt+M,cmp);
34         for(int i=0;i<M;i++){
35             merge(dt[i]);
36         }
37         //printf("%d %d \n",tot,mi);
38         printf("%d\n",tot-mi);
39     }
40     return 0;
41 }

 

转载于:https://www.cnblogs.com/handsomecui/p/4725631.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值