In Walrusland public transport tickets are characterized by two integers: by the number of the series and by the number of the ticket in the series. Let the series number be represented by a and the ticket number — by b, then a ticket is described by the ordered pair of numbers (a, b).
The walruses believe that a ticket is lucky if a * b = rev(a) * rev(b). The function rev(x) reverses a number written in the decimal system, at that the leading zeroes disappear. For example, rev(12343) = 34321, rev(1200) = 21.
The Public Transport Management Committee wants to release x series, each containing y tickets, so that at least w lucky tickets were released and the total number of released tickets (x * y) were minimum. The series are numbered from 1 to x inclusive. The tickets in each series are numbered from 1 to y inclusive. The Transport Committee cannot release more than maxx series and more than maxytickets in one series.
The first line contains three integers maxx, maxy, w (1 ≤ maxx, maxy ≤ 105, 1 ≤ w ≤ 107).
Print on a single line two space-separated numbers, the x and the y. If there are several possible variants, print any of them. If such xand y do not exist, print a single number - 1.
2 2 1
1 1
132 10 35
7 5
5 18 1000
-1
48 132 235
22 111
1. 计算a/rev(a)的比值,然后以这个比值做排序,然后可以快速算出满足a*b=rev(a)*rev(b)的b的值
2.然后扫描一遍即可
#include <iostream>
#include<vector>
#include<stdio.h>
#include<algorithm>
#define inf 1000000000000
using namespace std;
struct node{
__int64 x,y,z;
};
vector<node> b,f;
__int64 a[200000];
int tmp[1000],c[200000][3],p[200000];
vector<int> g[200000];
bool cmp(node a,node b)
{
return ((a.x*b.y<a.y*b.x));//||(a.x*b.y==a.y*b.x&&a.x<b.x));
}
int dog(int x)
{
int i,ret=0;
for(i=1;x!=0;i++)
{
tmp[i]=x%10;
x=x/10;
}
for(int j=i-1,k=1;j>=1;j--,k*=10)
ret+=tmp[j]*k;
return ret;
}
int main()
{
int n,mx,my,x1,x2,k1,k2,k3,k4,j,k;
__int64 w,ans;
while(scanf("%d%d%I64d",&mx,&my,&w)!=EOF)
{
b.clear();
n=max(mx,my);
for(int i=1;i<=n;i++)
{
a[i]=dog(i);
node nd;
nd.x=i;
nd.y=a[i];
b.push_back(nd);
}
sort(b.begin(),b.end(),cmp);
f.push_back(b[0]);
f[0].z=1;
int t1=1;
k3=n-1;
for(int i=0;i<=n;i++)
{
g[i].clear();
p[i]=0;
}
for(int i=0;i<n;i=k2+1)
{
k1=i;
for(j=i;j<n;j++)
if (b[j].x*b[k1].y!=b[j].y*b[k1].x) break;
k2=j-1;
for(j=k3;j>=0;j--)
if (b[i].x*b[j].x<=b[i].y*b[j].y) break;
k3=j;
if (k3<0) continue;
if(b[i].x*b[j].x!=b[i].y*b[j].y) continue;
for(k=j;k>=0;k--)
if (b[j].x*b[k].y!=b[j].y*b[k].x) break;
k4=k+1;
for(j=k1;j<=k2;j++)
for(k=k4;k<=k3;k++)
g[b[j].x].push_back(b[k].x);
i=k2+1;
}
ans=inf;
int pt=my,tot=0;
for(int i=1;i<=mx;i++)
{
for(j=0;j<g[i].size();j++)
{
if (g[i][j]>pt) continue;
p[g[i][j]]++;
tot++;
}
if (tot<w) continue;
if (ans>(__int64)(i)*(__int64)(pt))
{
ans=(__int64)(i)*(__int64)(pt);
x1=i;
x2=pt;
}
for(j=pt;j>=1;j--)
{
if (tot-p[j]>=w)
{
tot-=p[j];
if (ans>(__int64)(i)*(__int64)(j-1))
{
ans=(__int64)(i)*(__int64)(j-1);
x1=i;
x2=j-1;
}
}
else
{
pt=j;
break;
}
}
}
if (ans!=inf) printf("%d %d\n",x1,x2);
else
printf("-1\n");
}
return 0;
}