[牛客][北大考研复试]I Wanna Go Home[dijkstra]

本文介绍了一个关于在发生内战的国家中寻找从一个城市到另一个城市的最短路径的问题,考虑到政治局势的限制,路径只能包含一条连接不同阵营城市的道路。使用Dijkstra算法并加入堆优化来解决该问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

    The country is facing a terrible civil war----cities in the country are divided into two parts supporting different leaders. As a merchant, Mr. M does not pay attention to politics but he actually knows the severe situation, and your task is to help him reach home as soon as possible.     "For the sake of safety,", said Mr.M, "your route should contain at most 1 road which connects two cities of different camp."     Would you please tell Mr. M at least how long will it take to reach his sweet home?

输入描述:

    The input contains multiple test cases.
    The first line of each case is an integer N (2<=N<=600), representing the number of cities in the country.
    The second line contains one integer M (0<=M<=10000), which is the number of roads.
    The following M lines are the information of the roads. Each line contains three integers A, B and T, which means the road between city A and city B will cost time T. T is in the range of [1,500].
    Next part contains N integers, which are either 1 or 2. The i-th integer shows the supporting leader of city i. 
    To simplify the problem, we assume that Mr. M starts from city 1 and his target is city 2. City 1 always supports leader 1 while city 2 is at the same side of leader 2. 
    Note that all roads are bidirectional and there is at most 1 road between two cities.
Input is ended with a case of N=0.

输出描述:

    For each test case, output one integer representing the minimum time to reach home.
    If it is impossible to reach home according to Mr. M's demands, output -1 instead.
示例1

输入

复制
2
1
1 2 100
1 2
3
3
1 2 100
1 3 40
2 3 50
1 2 1
5
5
3 1 200
5 3 150
2 5 160
4 3 170
4 2 170
1 2 2 2 1
0

输出

复制
100
90
540

 

单源最短路问题,直接套了裸的Dijkstra(按照惯例加了堆优化),更新dis时加一个2城市不能到1城市的判断即可。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int N = 700;
const int M = 80000;
int n,m,tol;
struct Edge{
    int v,w,next;
}edge[M];
int head[N],vis[N],dis[N];
int lable[N];
void init(){
    tol = 0;
    memset(vis,0,sizeof(vis));
    memset(head,-1,sizeof(head));
}

void addedge(int u,int v,int w){
    edge[tol] = Edge{v,w,head[u]};
    head[u] = tol++;
}
struct Node{
    int u,w;
    bool operator < (const Node a)const{
        return w > a.w;
    }
}; 
priority_queue <Node> q;
void dijkstra(){
    memset(dis,inf,sizeof(dis));
    dis[1] = 0;
    q.push(Node{1,0});
    while(!q.empty()){
        Node a = q.top();
        q.pop();
        int u = a.u,w = a.w;
        if (vis[u]) continue;
        vis[u] = 1;
        for (int i = head[u];i != -1;i = edge[i].next){
            int v = edge[i].v,w = edge[i].w;
            if (!vis[v] && dis[v] > dis[u] + w && !(lable[u] == 2 && lable[v] == 1)){
                dis[v] = dis[u] + w;
                q.push(Node{v,dis[v]});
            }
            
        }
    }
}

int main(){
    while (~scanf("%d",&n)&&n){
        scanf("%d",&m);
        init();
        for (int i = 0;i < m;++i){
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            addedge(u,v,w);
            addedge(v,u,w);
        }
        for (int i = 1;i <= n;++i){
            int tmp;
            scanf("%d",&tmp);
            lable[i] = tmp;
        }
        dijkstra();
        if (dis[2] == inf) puts("-1");
            else printf("%d\n",dis[2]);
    }
}

 

转载于:https://www.cnblogs.com/mizersy/p/11613946.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值