Python股票分析系列——基础股票数据操作(一).p3

本教程介绍如何使用Python进行股市数据的基本操作和可视化,包括计算移动平均线并使用matplotlib绘制股价及交易量图表。

该系列视频已经搬运至bilibili: 点击查看

 

欢迎来到Python for Finance教程系列的第3部分。在本教程中,我们将使用我们的股票数据进一步分解一些基本的数据操作和可视化。我们将要使用的开始代码(在前面的教程中已经介绍过)是:

import datetime as dt
import matplotlib.pyplot as plt
from matplotlib import style
import pandas as pd
import pandas_datareader.data as web
style.use('ggplot')

df = pd.read_csv('tsla.csv', parse_dates=True, index_col=0)

pandas模块配备了一系列可以利用的内置功能,以及创建自定义pandas功能的方法。稍后我们将介绍一些自定义函数,但现在让我们对这些数据执行一个非常常见的操作:移动平均线moving averages。

简单移动平均线的想法是花时间窗口,并计算该窗口中的平均价格。然后我们把这个窗口转过一段时间,然后再做一次。在我们的例子中,我们将执行100日均线(100ma)。因此,这将采用当前价格,并将过去99天的价格加起来除以100,然后确定当前的100日均线。然后我们移动窗户超过1天,然后再做同样的事情。在pandas中这样做很简单:

df['100ma'] = df['Adj Close'].rolling(window=100).mean()

做df ['100ma']允许我们重新定义包含现有列的内容(如果我们有一个名为“100ma”的),或者创建一个新列,这就是我们在这里所做的。我们说df ['100ma']列等同于应用滚动方法的df ['Adj Close']列,窗口为100,这个窗口将是一个平均值( )(平均)操作。

现在,我们可以这样做:

print(df.head())
                  Date       Open   High        Low      Close    Volume  \
Date                                                                       
2010-06-29  2010-06-29  19.000000  25.00  17.540001  23.889999  18766300   
2010-06-30  2010-06-30  25.790001  30.42  23.299999  23.830000  17187100   
2010-07-01  2010-07-01  25.000000  25.92  20.270000  21.959999   8218800   
2010-07-02  2010-07-02  23.000000  23.10  18.709999  19.200001   5139800   
2010-07-06  2010-07-06  20.000000  20.00  15.830000  16.110001   6866900   

            Adj Close  100ma  
Date                          
2010-06-29  23.889999    NaN  
2010-06-30  23.830000    NaN  
2010-07-01  21.959999    NaN  
2010-07-02  19.200001    NaN  
2010-07-06  16.110001    NaN  

发生了什么? 在100ma列下,我们只看到NaN。 我们选择了100个移动平均线,理论上需要100个之前的数据点进行计算,所以我们在前100行中不会有任何数据。 NaN的意思是“Not a Number”。 在Pandas,你可以决定做许多事情与缺失的数据,但现在,让我们实际上只是改变最小周期参数:

df['100ma'] = df['Adj Close'].rolling(window=100,min_periods=0).mean()
print(df.head())
                  Date       Open   High        Low      Close    Volume  \
Date                                                                       
2010-06-29  2010-06-29  19.000000  25.00  17.540001  23.889999  18766300   
2010-06-30  2010-06-30  25.790001  30.42  23.299999  23.830000  17187100   
2010-07-01  2010-07-01  25.000000  25.92  20.270000  21.959999   8218800   
2010-07-02  2010-07-02  23.000000  23.10  18.709999  19.200001   5139800   
2010-07-06  2010-07-06  20.000000  20.00  15.830000  16.110001   6866900   

            Adj Close      100ma  
Date                              
2010-06-29  23.889999  23.889999  
2010-06-30  23.830000  23.860000  
2010-07-01  21.959999  23.226666  
2010-07-02  19.200001  22.220000  
2010-07-06  16.110001  20.998000 

看吧,现在生效了,现在我们想看看它! 但是我们已经看到了简单的图表,稍微复杂一点的东西呢?

ax1 = plt.subplot2grid((6,1), (0,0), rowspan=5, colspan=1)
ax2 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1,sharex=ax1)

基本上,我们说我们要创建两个子图,并且这两个子图都会像6x1网格一样工作,我们有6行1列。 第一个子图从该网格上的(0,0)开始,跨越5行,并跨越1列。 下一个轴也位于6x1网格上,但它始于(5,0),跨越1行和1列。 第二个轴也有sharex = ax1,这意味着ax2将始终将其x轴与ax1的x轴对齐,反之亦然。 现在我们只是制作我们的地块:

ax1.plot(df.index, df['Adj Close'])
ax1.plot(df.index, df['100ma'])
ax2.bar(df.index, df['Volume'])

plt.show()

综上,我们绘制了第一轴上的close和100ma,第二轴上的volume。 我们的结果:

完整的代码到目前为止:

import datetime as dt
import matplotlib.pyplot as plt
from matplotlib import style
import pandas as pd
import pandas_datareader.data as web
style.use('ggplot')

df = pd.read_csv('tsla.csv', parse_dates=True, index_col=0)
df['100ma'] = df['Adj Close'].rolling(window=100, min_periods=0).mean()
print(df.head())

ax1 = plt.subplot2grid((6,1), (0,0), rowspan=5, colspan=1)
ax2 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1, sharex=ax1)

ax1.plot(df.index, df['Adj Close'])
ax1.plot(df.index, df['100ma'])
ax2.bar(df.index, df['Volume'])

plt.show()

在接下来的几节教程中,我们将学习如何通过Pandas数据重采样制作烛台图形,并学习更多关于使用Matplotlib的知识。

 

下一篇教程:Python股票分析系列——基础股票数据操作(二).p4

转载于:https://www.cnblogs.com/Blaxon/p/8567656.html

Python中,可以使用概率论中的随机变量分布来进行统计计算。常见的离散型分布包括二项分布和泊松分布,连续性分布包括正态分布、均匀分布和指数分布等。这些分布可以用来计算概率、期望和方差等统计量。 对于正态分布,可以使用scipy.stats库中的norm模块进行计算。例如,可以使用norm.cdf函数计算小于某个值的概率,使用norm.ppf函数计算给定累积概率时的反函数值。代码示例如下: ``` from scipy.stats import norm # 计算小于40的概率 p1 = norm.cdf(40, loc=50, scale=10) # 计算30到40之间的概率 p2 = norm.cdf(40, loc=50, scale=10) - norm.cdf(30, loc=50, scale=10) # 计算小于2.5的概率 p3 = norm.cdf(2.5, 0, 1) # 计算-1.5到2之间的概率 p4 = norm.cdf(2) - norm.cdf(-1.5) # 计算累计概率为0.025时的反函数值 q1 = norm.ppf(0.025, loc=0, scale=1) # 计算累计概率为0.975时的反函数值 q2 = norm.ppf(0.975, 0, 1) print(p1, p2, p3, p4, q1, q2) ``` 对于计算随机变量的概率分布的均值和方差,可以使用numpy库进行计算。代码示例如下: ``` import numpy as np # 假设有个数据框df,其中包含了不合格品数和概率 mymean = sum(df[&#39;不合格品数&#39;] * df[&#39;概率&#39;]) # 计算均值 myvar = sum((df[&#39;不合格品数&#39;] - mymean) ** 2 * df[&#39;概率&#39;]) # 计算方差 mystd = np.sqrt(myvar) # 计算标准差 print(mymean, myvar, mystd) ``` 以上是关于Python统计学中随机变量的概率分布的些基本操作和计算方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python统计学03——随机变量的概率分布](https://blog.csdn.net/weixin_46277779/article/details/126673517)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值