Good Article Good sentence
\[ Time Limit: 3000 ms\quad Memory Limit: 32768 kB \]
题意
给出一个 \(S\) 串,在给出 \(n\) 个 \(T\) 串,求出 \(S\) 串中有多少子串没有在任意一个 \(T\) 串中出现过
思路
\(\quad\)总体思路就是用 \(S\) 中所有的子串减去 \(T\) 中出现的子串在减去和本身重复的子串。
\(\quad\)可以把 \(S\) 串和所有的 \(T\) 串连接起来,中间用不同的字符分隔开,然后求一遍后缀数组,然后对于 \(S\) 的每一个位置开始的后缀,它和 \(T\) 的最长公共子串就是往两边找到第一个属于 \(T\) 的 \(LCP\),所以正着扫一遍,反着扫一遍,最后两个方向的 \(LCP\) 取 \(max\) 就可以了。然后就是去重本身重复的串的问题了,如果 \(sa[i]\) 和 \(sa[i-1]\) 都是在 \(Slen\) 内,这时候就需要去重了,更新 \(tmpans[sa[i-1]]\)(这里不能去更新 \(tmpans[sa[i]]\),具体为什么我也不知道,会的大佬教教我?)。
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e6 + 10;
const int maxm = 1e5 + 10;
const ll mod = 1e9 + 7;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
char s[maxm], t[maxm];
int a[maxn], sa[maxn], rk[maxn], tp[maxn], tax[maxn], height[maxn];
int tmpans[maxn];
void rsort(int n, int m) {
for (int i = 0; i <= m; i++) tax[i] = 0;
for (int i = 1; i <= n; i++) tax[rk[tp[i]]]++;
for (int i = 1; i <= m; i++) tax[i] += tax[i - 1];
for (int i = n; i >= 1; i--) sa[tax[rk[tp[i]]]--] = tp[i];
}
int cmp(int *f, int x, int y, int w) {
return f[x] == f[y] && f[x + w] == f[y + w];
}
void SA(int *a, int n, int m) {
for(int i=1; i<=n; i++) rk[i] = a[i], tp[i] = i;
rsort(n, m);
for(int w = 1, p = 1, i; p < n; w <<= 1, m = p) {
for(p = 0, i = n - w + 1; i <= n; i++) tp[++p] = i;
for(i = 1; i <= n; i++) if(sa[i] > w) tp[++p] = sa[i] - w;
rsort(n, m), swap(rk, tp);
rk[sa[1]] = p = 1;
for(i = 2; i <= n; i++) rk[sa[i]] = cmp(tp, sa[i], sa[i-1], w) ? p : ++p;
}
int j, k = 0;
for(int i=1; i<=n; height[rk[i++]] = k)
for(k = k ? k-1 : k, j = sa[rk[i]-1]; a[i+k] == a[j+k]; k++);
}
int main() {
cas = 1;
scanf("%d", &T);
while(T--) {
n = 0;
scanf("%d", &m);
scanf("%s", s+1);
int slen = strlen(s+1);
for(int i=1; i<=slen; i++) {
a[++n] = s[i];
}
for(int i=1; i<=m; i++) {
a[++n] = i+'z';
scanf("%s", t+1);
int tlen = strlen(t+1);
for(int j=1; j<=tlen; j++) {
a[++n] = t[j];
}
}
a[++n] = 1;
SA(a, n, m+'z');
// for(int i=1; i<=n; i++) {
// printf("%d %d %d\n", sa[i], sa[i-1], height[i]);
// }
mes(tmpans, 0);
int tmp = inf;
for(int i=2; i<=n; i++) {
if(sa[i] <= slen) {
tmp = min(tmp, height[i]);
tmpans[sa[i]] = max(tmpans[sa[i]], tmp);
} else {
tmp = inf;
}
}
tmp = inf;
for(int i=n; i>=2; i--) {
if(sa[i-1] <= slen) {
tmp = min(tmp, height[i]);
tmpans[sa[i-1]] = max(tmpans[sa[i-1]], tmp);
} else {
tmp = inf;
}
}
ll ans = 1ll*(slen+1)*slen / 2;
for(int i=2; i<=n; i++) {
if(sa[i]<=slen && sa[i-1]<=slen)
tmpans[sa[i-1]] = max(tmpans[sa[i-1]], height[i]);
}
for(int i=1; i<=slen; i++) {
ans -= tmpans[i];
}
printf("Case %d: %lld\n", cas++, ans);
}
return 0;
}