uva 12167 - Proving Equivalences(强连通缩点,4级)

本文探讨了一道典型的线性代数证明题,题目要求证明矩阵的四个性质等价,并提供了解题策略。通过已有的部分证明,文章讨论了还需完成多少额外的推导才能完全证明这些性质等价。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Consider the following exercise, found in a generic linear algebra textbook.

Let A be an n × n matrix. Prove that the following statements are equivalent:
  1. A is invertible.
  2. Ax = b has exactly one solution for every n × 1 matrix b.
  3. Ax = b is consistent for every n × 1 matrix b.
  4. Ax = 0 has only the trivial solution x = 0.

The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?

Input

On the first line one positive number: the number of testcases, at most 100. After that per testcase:
  • One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
  • m lines with two integers s1 and s2 (1 ≤ s1s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.

Output

Per testcase:
  • One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.

Sample Input

2
4 0
3 2
1 2
1 3

Sample Output

4
2
The 2008 ACM Northwestern European Programming Contest

思路:标准的模板题。判断缩点后0出度点数和0入度的点数取大的值,就是答案。


//69MS
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
using namespace std;
const int mm=2e4+9;
const int mn=5e4+9;
int head[mm];
class node
{
  public:int v,next;
}e[mn],cun[mn];
int dfn[mm],ii[mm],oo[mm],edge;

int dfs_clock,bcc_no,n,m;
int e_to[mm],stak[mm],top;
int tarjan(int u)
{
  int lowu,lowv,v;
  lowu=dfn[u]=++dfs_clock;
  stak[++top]=u;
  for(int i=head[u];~i;i=e[i].next)
  {
    v=e[i].v;
    if(!dfn[v])
    {
      lowv=tarjan(v);
      lowu=min(lowu,lowv);

    }else if(!e_to[v])
    lowu=min(lowu,dfn[v]);
  }
  if(lowu>=dfn[u])
      {
        ++bcc_no;
        while(1)
        {
          v=stak[top--];
          e_to[v]=bcc_no;
          if(v==u)break;
        }
    }
  return lowu;
}
void find_bcc()
{ memset(dfn,0,sizeof(dfn));
  memset(e_to,0,sizeof(e_to));
  top=dfs_clock=bcc_no=0;
  for(int i=1;i<=n;++i)
    if(!dfn[i])tarjan(i);
}
void data()
{
  memset(head,-1,sizeof(head));edge=0;
}
void add(int u,int v)
{
  e[edge].v=v;e[edge].next=head[u];head[u]=edge++;
}
int main()
{
  int cas,a,b;
  while(~scanf("%d",&cas))
  {
    while(cas--)
    { data();
      scanf("%d%d",&n,&m);
      for(int i=0;i<m;++i)
      {
        scanf("%d%d",&a,&b);
        cun[i].next=a;cun[i].v=b;
        add(a,b);
      }
      find_bcc();
      int id=0,od=0;
      int u,v;
      memset(ii,0,sizeof(ii));
      memset(oo,0,sizeof(oo));
      for(int i=0;i<m;++i)
      { u=e_to[cun[i].next];v=e_to[cun[i].v];
        if(u!=v)
        oo[u]=1,ii[v]=1;
      }
      for(int i=1;i<=bcc_no;++i)
        {if(!ii[i])++id;
         if(!oo[i])++od;
        }
        int ans=max(id,od);
        if(bcc_no==1)ans=0;
        printf("%d\n",ans);
    }
  }
  return 0;
}



转载于:https://www.cnblogs.com/nealgavin/p/3206079.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值