(简单) POJ 3264 Balanced Lineup,RMQ。

本文介绍了一个简单的求RMQ(区间最大最小值查询)问题的解决方法,并提供了一段使用预处理和分段最大最小值来高效解答该问题的C++代码实现。

Description

For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

 

  题目就是求RMQ,水题。

 

代码如下:

// ━━━━━━神兽出没━━━━━━
//      ┏┓       ┏┓
//     ┏┛┻━━━━━━━┛┻┓
//     ┃           ┃
//     ┃     ━     ┃
//     ████━████   ┃
//     ┃           ┃
//     ┃    ┻      ┃
//     ┃           ┃
//     ┗━┓       ┏━┛
//       ┃       ┃
//       ┃       ┃
//       ┃       ┗━━━┓
//       ┃           ┣┓
//       ┃           ┏┛
//       ┗┓┓┏━━━━━┳┓┏┛
//        ┃┫┫     ┃┫┫
//        ┗┻┛     ┗┻┛
//
// ━━━━━━感觉萌萌哒━━━━━━

// Author        : WhyWhy
// Created Time  : 2015年07月17日 星期五 16时52分31秒
// File Name     : 3264.cpp

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>

using namespace std;

const int MaxN=50004;

int dp1[MaxN][20],dp2[MaxN][20];
int logN[MaxN];

void init(int N,int num[])
{
    logN[0]=-1;

    for(int i=1;i<=N;++i)
    {
        dp1[i][0]=num[i];
        dp2[i][0]=num[i];
        logN[i]=logN[i-1]+((i&(i-1))==0);
    }

    for(int j=1;j<=logN[N];++j)
        for(int i=1;i+(1<<j)-1<=N;++i)
        {
            dp1[i][j]=max(dp1[i][j-1],dp1[i+(1<<(j-1))][j-1]);
            dp2[i][j]=min(dp2[i][j-1],dp2[i+(1<<(j-1))][j-1]);
        }
}

int RMQ(int x,int y)
{
    int k=logN[y-x+1];

    return max(dp1[x][k],dp1[y-(1<<k)+1][k])-min(dp2[x][k],dp2[y-(1<<k)+1][k]);
}

int num[MaxN];

int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);

    int N,Q;
    int a,b;

    while(~scanf("%d %d",&N,&Q))
    {
        for(int i=1;i<=N;++i)
            scanf("%d",&num[i]);

        init(N,num);

        while(Q--)
        {
            scanf("%d %d",&a,&b);

            printf("%d\n",RMQ(a,b));
        }
    }
    
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/whywhy/p/4655138.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值