bzoj1016: [JSOI2008]最小生成树计数

本文介绍了一种求解特定图论问题的方法:先利用最小生成树算法找到连接所有节点的最短路径集合,再通过搜索算法遍历可能的状态空间以解决特定组合问题。文章包含完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sort改成qsort就A了???玄学操作。。其实觉得好像这题是暴力。。但是波老师好像做了半早上。。

首先肯定是先把最小生成树求出来,然后弄个结构体,表示l~r这些边值相等,v表示用了多少这样的值的边,然后爆搜可能的情况。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int mod=31011;
struct node
{
    int x,y,d;
}a[1100];
struct line
{
    int l,r,v;
}s[1100];int cnt;
int cmp(const void *xx,const void *yy)
{
    node n1=*(node *)xx;
    node n2=*(node *)yy;
    if(n1.d>n2.d)return 1;
    else if(n1.d<n2.d)return -1;
    else return 0;
}
int fa[1100];
int findfa(int x)
{
    if(x!=fa[x])return findfa(fa[x]);
    return x;
}
int sum;
void dfs(int x,int i,int k)
{
    if(i==s[x].r+1)
    {
        if(k==s[x].v)sum++;
        return ;
    }
    int fx=findfa(a[i].x),fy=findfa(a[i].y);
    if(fx!=fy)
    {
        fa[fx]=fy;
        dfs(x,i+1,k+1);
        fa[fx]=fx;fa[fy]=fy;
    }
    dfs(x,i+1,k);
}
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;i++)scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].d);
    qsort(a+1,m,sizeof(node),cmp);
    for(int i=1;i<=n;i++)fa[i]=i;
    
    int tot=0;
    for(int i=1;i<=m;i++)
    {
        if(a[i].d!=a[i-1].d)
        {
            s[cnt].r=i-1;
            cnt++;
            s[cnt].l=i;s[cnt].v=0;
        }
        
        int fx=findfa(a[i].x),fy=findfa(a[i].y);
        if(fx!=fy)
        {
            fa[fx]=fy;
            tot++;s[cnt].v++;
        }
    }
    s[cnt].r=m;
    if(tot<n-1){printf("0\n");return 0;}
    
    for(int i=1;i<=n;i++)fa[i]=i;
    int ans=1;
    for(int i=1;i<=cnt;i++)
    {
        sum=0;
        dfs(i,s[i].l,0);
        ans=(ans*sum)%mod;
        for(int j=s[i].l;j<=s[i].r;j++)
        {
            int fx=findfa(a[j].x),fy=findfa(a[j].y);
            if(fx!=fy)fa[fx]=fy;
        }
    }
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/AKCqhzdy/p/7640373.html

资源下载链接为: https://pan.quark.cn/s/9648a1f24758 这个HTML文件是一个专门设计的网页,适合在告白或纪念日这样的特殊时刻送给女朋友,给她带来惊喜。它通过HTML技术,将普通文字转化为富有情感和创意的表达方式,让数字媒体也能传递深情。HTML(HyperText Markup Language)是构建网页的基础语言,通过标签描述网页结构和内容,让浏览器正确展示页面。在这个特效网页中,开发者可能使用了HTML5的新特性,比如音频、视频、Canvas画布或WebGL图形,来提升视觉效果和交互体验。 原本这个文件可能是基于ASP.NET技术构建的,其扩展名是“.aspx”。ASP.NET是微软开发的一个服务器端Web应用程序框架,支持多种编程语言(如C#或VB.NET)来编写动态网页。但为了在本地直接运行,不依赖服务器,开发者将其转换为纯静态的HTML格式,只需浏览器即可打开查看。 在使用这个HTML特效页时,建议使用Internet Explorer(IE)浏览器,因为一些老的或特定的网页特效可能只在IE上表现正常,尤其是那些依赖ActiveX控件或IE特有功能的页面。不过,由于IE逐渐被淘汰,现代网页可能不再对其进行优化,因此在其他现代浏览器上运行可能会出现问题。 压缩包内的文件“yangyisen0713-7561403-biaobai(html版本)_1598430618”是经过压缩的HTML文件,可能包含图片、CSS样式表和JavaScript脚本等资源。用户需要先解压,然后在浏览器中打开HTML文件,就能看到预设的告白或纪念日特效。 这个项目展示了HTML作为动态和互动内容载体的强大能力,也提醒我们,尽管技术在进步,但有时复古的方式(如使用IE浏览器)仍能唤起怀旧之情。在准备类似的个性化礼物时,掌握基本的HTML和网页制作技巧非常
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值