GMA Round 1 函数求值

本文通过构造函数g(x)=f(x)-212x,并利用已知条件f(k)=k*212 (1≤k≤2017),解决了一个复杂的函数求值问题。通过分析g(x)的零点特性,最终求得了f(2018)+f(0)-A_{2018}

传送门

 

 

函数求值

  设函数$f(x)=x^{2018}+a_{2017}*x^{2017}+a_{2016}*x^{2016}+...+a_{2}*x^2+a_{1}*x+a_{0}$,其中$a_{0},a_{1},a_{2},....,a_{2016},a_{2017}$是实常数。

  已知$f(1)=212,f(2)=424,……,f(k)=k*212,……,f(2017)=2017*212$。求$f(2018)+f(0)-A_{2018}^{2018}$

 

 

  设g(x)=f(x)-212x,1~2017为g(x)的2017个零点,设最后一个零点横坐标为r,g(x)=(x-1)(x-2)……(x-2017)(x-r)。

  g(0)=1*2*……*2017*r=2017!*r

  g(2018)=2017*……*2*1*(2018-r)=2017!*(2018-r)

  g(0)+g(2018)=2017!*(r+2018-r)=2018!

  原式=g(0)+g(2018)+0*212+2018*212-2018!=2018*212=427816

  定位:中等题

转载于:https://www.cnblogs.com/Enceladus/p/8478465.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值