Leetcode Week10 Unique Paths II

本文探讨了在一个m x n网格中,机器人如何避开障碍物从起点到终点的路径规划问题。通过动态规划方法,计算出从任意一点到达终点的可行路径数,最终得出从起点到终点的总路径数。

Question

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

Input:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

Answer

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        if (m == 0) return 0;
        int n = obstacleGrid[0].size();
        if (n == 0) return 0;
        if (obstacleGrid[m-1][n-1] == 1) return 0;
        if (m == 1 && n == 1) return 1;
        vector<vector<int>> dp(m, vector<int>(n));
        if (n >= 2)
         dp[m-1][n-2] = (obstacleGrid[m-1][n-2] == 0) ? 1 : 0;
        if (m >= 2)
          dp[m-2][n-1] = (obstacleGrid[m-2][n-1] == 0) ? 1 : 0;
        for (int i = m-3; i >= 0; i--) {
            if (obstacleGrid[i][n-1] == 0) {
                dp[i][n-1] = dp[i+1][n-1];
            }
        }
          for (int i = n-3; i >= 0; i--) {
            if (obstacleGrid[m-1][i] == 0) {
                dp[m-1][i] = dp[m-1][i+1];
            }
        }
        for (int i = m-2; i >= 0; i--) {
            for (int j = n-2; j >= 0; j--) {
              if (obstacleGrid[i][j] == 0) {
                dp[i][j] = dp[i+1][j]+dp[i][j+1];
              }
            }
        }
        return dp[0][0];
    }
};

  动态规划,从终点往起点判断某个位置是否能到达,dp[i][j]代表第i行第j列是否能到达。

转载于:https://www.cnblogs.com/thougr/p/10207001.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值