HDU 5597 GTW likes function 打表

本文解析了HDU 5596 GTW likes function题目,通过观察发现函数f(x)实际上等于x+1,进而简化为求解Euler totient function φ(n+x+1),并提供了完整的C++实现代码。

GTW likes function

题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=5596

Description

Now you are given two definitions as follows.

f(x)=∑xk=0(−1)k22x−2kCk2x−k+1,f0(x)=f(x),fn(x)=f(fn−1(x))(n≥1)

Note that φ(n) means Euler’s totient function.(φ(n)is an arithmetic function that counts the positive integers less than or equal to n that are relatively prime to n.)

For each test case, GTW has two positive integers — n and x, and he wants to know the value of the function φ(fn(x)).

Input

There is more than one case in the input file. The number of test cases is no more than 100. Process to the end of the file.

Each line of the input file indicates a test case, containing two integers, n and x, whose meanings are given above. (1≤n,x≤1012)

Output

In each line of the output file, there should be exactly one number, indicating the value of the function φ(fn(x)) of the test case respectively.

Sample Input

1 1

2 1

3 2

Sample Output

2

2

2

Hint

题意

651210-20151212224122231-675940764.png

题解:

一切反动派都是纸老虎

打表之后很容易发现,f(x) = x+1

于是这道题就很蠢了,直接输出phi(n+x+1)就好了

代码

#include<iostream>
#include<stdio.h>
using namespace std;


long long phi(long long n)
{
    long long tmp=n;
    for(long long i=2;i*i<=n;i++)
        if(n%i==0)
        {
            tmp/=i;tmp*=i-1;
            while(n%i==0)n/=i;
        }
    if(n!=1)tmp/=n,tmp*=n-1;
    return tmp;
}

int main()
{
    long long n,x;
    while(scanf("%I64d%I64d",&n,&x)!=EOF)
        printf("%I64d\n",phi(x+n+1));
    return 0;
}

转载于:https://www.cnblogs.com/qscqesze/p/5042003.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值