codeforces 343d

本文介绍了一种基于树状结构的水传播算法,通过DFS序实现节点间水的传播和排干操作。利用线段树进行区间更新和查询,解决节点间水状态的快速修改与查询问题。

题意:一棵树结构上有水,往一个节点加水,那么所有的子节点都会有水,或者排干一个节点的水,那么它的上面的节点都会没水。

用dfs序,数组记录区间内全部有水为1,区间内有没水的点就为0。

倒水:区间更新,排水:单点更新,并更新途中经过的所有点,查询:区间查询。

倒水:区间内所有的点变为有水,就是1,用lazy数组,要下传。

排水:所有节点的dfs序之间的相交只能是包含,并且只被祖先包含。那么在线段树中就将经过的点全部排去。这样祖先节点查询时就为0了,并且无关节点还是有水。不过这样有个BUG,假如开始全有水,如果一个节点排空了立即加水,那么祖先又有水了,实际上是没水,这时将祖先排水就行。

6
2 1
3 1
4 1
4 5
2 6
4
1 1
2 4
1 4
3 1就这。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <iomanip>
#include <cstring>
#include <map>
#include <queue>
#include <set>
#include <cassert>
#include <stack>
#include <bitset>
#include <unordered_set>
#define mkp make_pair
using namespace std;
const double EPS=1e-8;
typedef long long lon;
const lon SZ=500010,SSZ=10*SZ,APB=20,INF=0x7FFFFFFF,mod=1000000007;
lon n,bg[SZ],fn[SZ],cnt,arr[SSZ],lazy[SSZ];
lon pre[SZ];
vector<int> mp[SZ];

void release()
{
    
}

void dfs(int x,int p)
{
    bg[x]=++cnt;
    pre[x]=p;
    for(int i=0;i<mp[x].size();++i)
    {
        int to=mp[x][i];
        if(to!=p)
        {
            dfs(to,x);
        }
    }
    fn[x]=cnt;
}

void pushdown(int rt)
{
    if(lazy[rt])
    {
        lazy[rt*2]=lazy[rt*2+1]=1;
        arr[rt*2]=arr[rt*2+1]=1;
        lazy[rt]=0;
    }
}

void pushup(int rt)
{
    arr[rt]=arr[rt*2]*arr[rt*2+1];
}

void update(int ll,int rr,int rt,int ql,int qr)
{
    int mid=(ll+rr)/2;
    pushdown(rt);
    if(ql<=ll&&rr<=qr)
    {
        arr[rt]=1;
        lazy[rt]=1;
        return;
    }
    if(ll>rr)return;
    if(ql<=mid)update(ll,mid,rt*2,ql,qr);
    if(qr>mid)update(mid+1,rr,rt*2+1,ql,qr);
    pushup(rt);
}

void update(int ll,int rr,int rt,int pos)
{
    int mid=(ll+rr)/2;
    pushdown(rt);
    if(ll==rr)
    {
        arr[rt]=0;
        return;
    }
    if(pos<=mid)update(ll,mid,rt*2,pos);
    else update(mid+1,rr,rt*2+1,pos);
    pushup(rt);
}

int qry(int ll,int rr,int rt,int ql,int qr)
{
    //cout<<" "<<ll<<" "<<rr<<endl;
    int mid=(ll+rr)/2;
    pushdown(rt);
    if(ql<=ll&&rr<=qr)
    {
        return arr[rt];
    }
    if(ll>rr)return 1;
    int res1=1,res2=1;
    if(ql<=mid)res1=qry(ll,mid,rt*2,ql,qr);
    if(qr>mid)res2=qry(mid+1,rr,rt*2+1,ql,qr);
    return res1*res2;
}

void init()
{
    cin>>n;
    for(int i=1;i<=n-1;++i)
    {
        int a,b;
        cin>>a>>b;
        mp[a].push_back(b);
        mp[b].push_back(a);
    }
    dfs(1,-1);
}

void work()
{
    int qnum;
    cin>>qnum;
    for(int i=1;i<=qnum;++i)
    {
        int type,x;
        cin>>type>>x;
        if(type==1)
        {
            if(x!=1&&!qry(1,cnt,1,bg[x],fn[x]))update(1,cnt,1,bg[pre[x]]);
            update(1,cnt,1,bg[x],fn[x]);
        }
        else if(type==2)
        {
            update(1,cnt,1,bg[x]);
        }
        else
        {
            //cout<<"3: "<<bg[x]<<" "<<fn[x]<<endl;
            cout<<qry(1,cnt,1,bg[x],fn[x])<<endl;
        }
    }
}

int main()
{
    //std::ios::sync_with_stdio(0);
    //freopen("d:\\2.txt","r",stdin);
    //freopen("d:\\3.txt","w",stdout);
    lon casenum;
    //cin>>casenum;
    //cout<<casenum<<endl;
    //for(lon time=1;time<=casenum;++time)
    //for(lon time=1;scanf("%d%d",&n,&m)!=EOF;++time)
    {
        init();
        work();
        release();
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/gaudar/p/10698052.html

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值