一道逻辑题 - 我拿走了哪个数

本文深入探讨了一个巧妙的数学算法,通过计算一系列从1到10000的整数相乘后的结果,以及去除其中一个数后的剩余乘积,从而推断出被移除的特定数值。文章进一步拓展了这一概念,考虑了数组中可能出现的0值,以及当数值范围超出标准数据类型限制时的解决方案。通过位操作,特别是异或运算,实现了一种高效且灵活的方法来确定缺失的数字,即使在极端情况下也能有效运行。

有 1 到 10000 共 10000 个数,如果我从中随机拿走一个数,你如何知道我拿走了哪个?

相信很多人看过这道题,并知道答案,这几天和同事聊天时听到了这个问题,因为有过自己的思考过程,不妨记录下来。 说是逻辑题,其实也算是一道算法题,同事先讲了下他被面试中的思维过程:

  1. 先把 10000 个数相乘,然后再将拿走一个数之后的 9999 个数相乘,两者相除即可。

    这个算法是正确的,但是会有两个潜在的问题:

    • 如此多的数相乘,其范围必然会超出系统提供的数据类型支持,当然你可以实现自己的大数表示的算法,但那样性能必然有影响。
    • 假设扩展一下题目,提供的数组中有 0 的话,乘法就不可用了。
  2. 针对前面提出的问题,同事想到了使用加法,先求出 10000 个数的和,再减去 9999 个数的和。

    这样数据不会溢出,而且加法的效率比乘法也要高很多,即使数据中包含 0,也没有任何问题。

然后就过关了,自己回去之后思考了一下,觉得还可以扩展,假设所有的数加起来之后仍然会溢出,那该如何处理,比如从 1 到 (264-1),于是想到了位操作,与、或,异或中,要数异或最为神奇,代入一看,果然合适: 先将所有的数异或起来,然后将拿走一个数之后的数异或起来,两者结果再异或,便是拿走的那个数。

我用 a,b,c,d 4 个数来做演示,因为异或符合结合律和交换律(你可以用 0,1 试一下),于是:

a^b^c^d = (a^b^c)^d
d = (a^b^c^d)^(a^b^c)

此处用异或的好处在于

  1. 不会溢出
  2. 异或的速度要快于加法

扩展一下题目,如果提供的不是整数,而是浮点数,会有问题吗? 当然没有,因为是在位级别上操作,无论是整数还是浮点数,在这个算法看来,都是一堆位,处理起来没有什么差别。

再扩展一下题目,如果提供的数本身就超出了内置类型的表示范围,如在 1 到 2128,该如何处理? 这个问题是在写这篇文章的过程中想到的,暂时没有好的办法。

转载于:https://www.cnblogs.com/liukedong/p/3978760.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值