F. Clique in the Divisibility Graph DP

本文介绍了一种解决特定图上的最大团问题的有效方法。通过构建一个由正整数组成的除法图,并利用动态规划思想,文章提出了一种高效算法来确定该图中的最大团大小。

http://codeforces.com/contest/566/problem/F

F. Clique in the Divisibility Graph
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

As you must know, the maximum clique problem in an arbitrary graph is NP-hard. Nevertheless, for some graphs of specific kinds it can be solved effectively.

Just in case, let us remind you that a clique in a non-directed graph is a subset of the vertices of a graph, such that any two vertices of this subset are connected by an edge. In particular, an empty set of vertexes and a set consisting of a single vertex, are cliques.

Let's define a divisibility graph for a set of positive integers A = {a1, a2, ..., an} as follows. The vertices of the given graph are numbers from set A, and two numbers ai and aj (i ≠ j) are connected by an edge if and only if either ai is divisible by aj, or aj is divisible by ai.

You are given a set of non-negative integers A. Determine the size of a maximum clique in a divisibility graph for set A.

Input

The first line contains integer n (1 ≤ n ≤ 106), that sets the size of set A.

The second line contains n distinct positive integers a1, a2, ..., an (1 ≤ ai ≤ 106) — elements of subset A. The numbers in the line follow in the ascending order.

Output

Print a single number — the maximum size of a clique in a divisibility graph for set A.

Examples
input
8
3 4 6 8 10 18 21 24
output
3
Note

In the first sample test a clique of size 3 is, for example, a subset of vertexes {3, 6, 18}. A clique of a larger size doesn't exist in this graph.

 

设DP[i]表示第i个数字结尾的最大合法情况。

那么递推过来的话,要在前i - 1个数字中,是a[i]约数的,才能递推过来dp[i],那么需要把a[i]分解因子。这样要sqrtn复杂度。超时。

可以考虑以第a[i]个数递推去后面,就是去更新[i + 1,以后的数字。

那么只有k * a[i]的才能递推过去。

但是有些会重复,

3 4 24这样,24既可以从3递推过来,也可以从4递推过来。那么娶个max即可。

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <assert.h>
#define IOS ios::sync_with_stdio(false)
using namespace std;
#define inf (0x3f3f3f3f)
typedef long long int LL;


#include <iostream>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <bitset>
const int maxn = 1e6 + 20;
int a[maxn];
int add[maxn];
int calc(int val) {
    int en = (int)sqrt(val * 1.0);
    int res = 0;
    for (int i = 2; i <= en; ++i) {
        if (val % i == 0) {
            res = max(res, add[i]);
            res = max(res, add[val / i]);
        }
    }
    return res;
}
void work() {
    int n;
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i) {
        scanf("%d", &a[i]);
    }
    int ans = 0;
    for (int i = 1; i <= n; ++i) {
        add[a[i]] += 1;
        for (int j = 2 * a[i]; j <= maxn - 20; j += a[i]) {
            add[j] = max(add[j], add[a[i]]);
        }
        ans = max(ans, add[a[i]]);
    }
//    for (int i = 1; i <= n; ++i) {
//        printf("%d ", add[a[i]]);
//    }
    printf("%d\n", ans);
}

int main() {
#ifdef local
    freopen("data.txt", "r", stdin);
//    freopen("data.txt", "w", stdout);
#endif
    work();
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/liuweimingcprogram/p/6792739.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值