codeforces round #419 E. Karen and Supermarket

树形背包问题解析
本文介绍了一种树形背包问题的解决方法,通过定义状态F[x][j][0/1]来表示在x子节点及本身中选择j个商品且当前节点是否使用优惠券(0/1)的情况。并通过动态规划的方法,给出了解决该问题的具体步骤。

On the way home, Karen decided to stop by the supermarket to buy some groceries.

She needs to buy a lot of goods, but since she is a student her budget is still quite limited. In fact, she can only spend up to b dollars.

The supermarket sells n goods. The i-th good can be bought for ci dollars. Of course, each good can only be bought once.

Lately, the supermarket has been trying to increase its business. Karen, being a loyal customer, was given n coupons. If Karen purchases the i-th good, she can use the i-th coupon to decrease its price by di. Of course, a coupon cannot be used without buying the corresponding good.

There is, however, a constraint with the coupons. For all i ≥ 2, in order to use the i-th coupon, Karen must also use the xi-th coupon (which may mean using even more coupons to satisfy the requirement for that coupon).

Karen wants to know the following. What is the maximum number of goods she can buy, without exceeding her budget b?

Input

The first line of input contains two integers n and b (1 ≤ n ≤ 5000, 1 ≤ b ≤ 109), the number of goods in the store and the amount of money Karen has, respectively.

The next n lines describe the items. Specifically:

  • The i-th line among these starts with two integers, ci and di (1 ≤ di < ci ≤ 109), the price of the i-th good and the discount when using the coupon for the i-th good, respectively.
  • If i ≥ 2, this is followed by another integer, xi (1 ≤ xi < i), denoting that the xi-th coupon must also be used before this coupon can be used.
Output

Output a single integer on a line by itself, the number of different goods Karen can buy, without exceeding her budget.

Examples
input
6 16
10 9
10 5 1
12 2 1
20 18 3
10 2 3
2 1 5
output
4
input
5 10
3 1
3 1 1
3 1 2
3 1 3
3 1 4
output
5
Note

In the first test case, Karen can purchase the following 4 items:

  • Use the first coupon to buy the first item for 10 - 9 = 1 dollar.
  • Use the third coupon to buy the third item for 12 - 2 = 10 dollars.
  • Use the fourth coupon to buy the fourth item for 20 - 18 = 2 dollars.
  • Buy the sixth item for 2 dollars.

The total cost of these goods is 15, which falls within her budget. Note, for example, that she cannot use the coupon on the sixth item, because then she should have also used the fifth coupon to buy the fifth item, which she did not do here.

In the second test case, Karen has enough money to use all the coupons and purchase everything.

 

题解:

树上背包哈,F[x][j][0/1]表示x子节点和本身中,选j个,当前节点是否打折(0/1)

方程式:

F[x][j+k][0]=min(F[x][j+k][0],F[u][k][0]+F[x][j][0])
F[x][j+k][1]=min(F[x][j+k][1],F[u][k][1]+F[x][j][1])
F[x][j+k][1]=min(F[x][j+k][1],F[u][k][0]+F[x][j][1])

复杂度O(n^2).

注意初始化和边界调节:

F[x][0][0]是要赋为0的,因为当前节点不打折时是可以不选的,而F[x][0][1]不能.

 

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 using namespace std;
 7 typedef long long ll;
 8 const int N=5002;
 9 int n,m;
10 int head[N],num=0,w[N],h[N],now[N];ll F[N][N][2];
11 struct Lin
12 {
13     int next,to;
14 } a[N<<1];
15 void init(int x,int y)
16 {
17     a[++num].next=head[x];
18     a[num].to=y;
19     head[x]=num;
20 }
21 void dfs(int x)
22 {
23     int u;
24     now[x]=1;
25     F[x][0][0]=0;
26     F[x][1][0]=w[x];F[x][1][1]=h[x];
27     for(int i=head[x]; i; i=a[i].next)
28         {
29             u=a[i].to;
30             dfs(u);
31             for(int j=now[x];j>=0;j--)
32                 {
33                     for(int k=0; k<=now[u]; k++)
34                         {
35                             F[x][j+k][0]=min(F[x][j+k][0],F[u][k][0]+F[x][j][0]);
36                             F[x][j+k][1]=min(F[x][j+k][1],F[u][k][1]+F[x][j][1]);
37                             F[x][j+k][1]=min(F[x][j+k][1],F[u][k][0]+F[x][j][1]);
38                         }
39                 }
40             now[x]+=now[u];//now为当前节点的子节点个数. 
41         }
42 }
43 int main()
44 {
45     scanf("%d%d",&n,&m);
46     int x,y,fa;
47     scanf("%d%d",&w[1],&h[1]);
48     h[1]=w[1]-h[1];
49     memset(F,127/3,sizeof(F));
50     for(int i=2; i<=n; i++)
51         {
52             scanf("%d%d%d",&x,&y,&fa);
53             w[i]=x;
54             h[i]=x-y;
55             init(fa,i);
56         }
57     dfs(1);
58     for(int i=n; i>=0; i--)
59         if(F[1][i][0]<=m || F[1][i][1]<=m)
60             {
61                 printf("%d",i);
62                 break;
63             }
64     return 0;
65 }

 

 

 

 

转载于:https://www.cnblogs.com/Yuzao/p/7074373.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值