吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例

本文介绍如何使用TensorFlow库进行卷积神经网络的基本操作,包括定义权重和偏置变量、实现卷积层和平均池化层,并通过具体代码示例展示其在矩阵上的应用。
import numpy as np
import tensorflow as tf

M = np.array([
        [[1],[-1],[0]],
        [[-1],[2],[1]],
        [[0],[2],[-2]]
    ])

print("Matrix shape is: ",M.shape)

filter_weight = tf.get_variable('weights', [2, 2, 1, 1], initializer = tf.constant_initializer([[1, -1],[0, 2]]))
biases = tf.get_variable('biases', [1], initializer = tf.constant_initializer(1))
M = np.asarray(M, dtype='float32')
M = M.reshape(1, 3, 3, 1)
x = tf.placeholder('float32', [1, None, None, 1])

conv = tf.nn.conv2d(x, filter_weight, strides = [1, 2, 2, 1], padding = 'SAME')
bias = tf.nn.bias_add(conv, biases)
pool = tf.nn.avg_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
with tf.Session() as sess:
    tf.global_variables_initializer().run()
    convoluted_M = sess.run(bias,feed_dict={x:M})
    pooled_M = sess.run(pool,feed_dict={x:M})
    print("convoluted_M: \n", convoluted_M)
    print("pooled_M: \n", pooled_M)

 

转载于:https://www.cnblogs.com/tszr/p/10876480.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值