HDU 2460 Network 傻逼Tarjan

本文介绍了一种通过Tarjan算法解决网络中桥接问题的方法。该算法能够在每次新增连接后,快速更新网络中的桥接数量。适用于需要动态调整的大型网络。

Network

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1014    Accepted Submission(s): 206


Problem Description
A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.

You are to help the administrator by reporting the number of bridges in the network after each new link is added.
 

 

Input
The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.

The last test case is followed by a line containing two zeros.
 

 

Output
For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.
 

 

Sample Input
3 2 1 2 2 3 2 1 2 1 3 4 4 1 2 2 1 2 3 1 4 2 1 2 3 4 0 0
 

 

Sample Output
Case 1: 1 0 Case 2: 2 0
 

 

Source
 

题意

给你一个无向图,有多次操作。每次操作加入一条边,然后询问有多少桥。

题解

就先Tarjan求出有多少桥,然后每次操作,就在搜索树上求个lca,在求的过程中遇到的桥都会失效,因为构成了环。详见代码

#pragma comment(linker, "/STACK:102400000,102400000") 
#include<iostream>
#include<vector>
#include<cstring>
#include<string>
#include<algorithm>
#include<stack>
#define MAX_N 100005
using namespace std;

vector<int> G[MAX_N];

int father[MAX_N];

int dfn[MAX_N],low[MAX_N],ind=0;
bool vis[MAX_N];

int n,m;

int sum = 0;
bool isBridge[MAX_N];

int p;

void Tarjan(int u) {
    father[u] = p;
    dfn[u] = low[u] = ++ind;
    vis[u] = 1;
    for (int i = 0; i < G[u].size(); i++) {
        int v = G[u][i];
        if (v == p)continue;
        if (!vis[v]) {
            int tmp = p;
            p = u;
            Tarjan(v);
            p = tmp;
            low[u] = min(low[u], low[v]);
            if (low[v] > dfn[u]) {
                sum++;
                isBridge[v] = 1;
            }
        }
        else
            low[u] = min(dfn[v], low[u]);
    }
}

int main() {
    int cas = 0;
    cin.sync_with_stdio(false);
    while (cin >> n >> m) {
        if (n == 0 && m == 0)break;
        memset(vis, 0, sizeof(vis));

        for (int i = 0; i <= n; i++)G[i].clear();
        sum = 0;
        memset(isBridge, 0, sizeof(isBridge));
        ind = 0;
        memset(father, 0, sizeof(father));
        for (int i = 0; i < m; i++) {
            int u, v;
            cin >> u >> v;
            G[u].push_back(v);
            G[v].push_back(u);
        }
        p = 0;
        Tarjan(1);
        int q;
        cin >> q;
        cout << "Case " << ++cas << ":" << endl;
        while (q--) {
            int u, v;
            cin >> u >> v;
            if (dfn[u] < dfn[v])swap(u, v);
            while (dfn[u] > dfn[v]) {
                if (isBridge[u])sum--;
                isBridge[u] = 0;
                u = father[u];
            }
            while (u != v) {
                if (isBridge[v])sum--;
                isBridge[v] = 0;
                v = father[v];
            }
            cout << sum << endl;
        }
        cout << endl;
    }
    return 0;
}

注意要扩栈

转载于:https://www.cnblogs.com/HarryGuo2012/p/4716340.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值