数学图形之圆环

(1)圆环

vertices = D1:72 D2:72 u = from 0 to (2*PI) D1 v = from 0 to (2*PI) D2 r = 3*cos(u) + 7 z = 3*sin(u) y = r*sin(v) x = r*cos(v) y = y + 5

 

 

(2)随机半径的圆环

这里提供了两种写法:

vertices = D1:72 D2:72

u = from 0 to (2*PI) D1
v = from 0 to (2*PI) D2

a = 10.0
b = rand2(0.5, a)

x = (a + b*cos(v))*sin(u)
y = b*sin(v)
z = (a + b*cos(v))*cos(u)
#http://www.mathcurve.com/surfaces/tore/tore.shtml
vertices = D1:100 D2:100

u = from 0 to (PI*2) D1 v = from 0 to (PI*2) D2
a = rand2(1, 10) b = rand2(1, 10)
x = (a + b*cos(v))*cos(u) z = (a + b*cos(v))*sin(u) y = b*sin(v)

(3)Horn Torus

其特点是小圈半径等于大圈的一半

#http://mathworld.wolfram.com/HornTorus.html

vertices = D1:100 D2:100

u = from 0 to (PI*2) D1
v = from 0 to (PI*2) D2

x = (1 + cos(v))*cos(u)
y = sin(v)
z = (1 + cos(v))*sin(u)

a = 10

x = x*a
y = y*a
z = z*a

(4)环桶

vertices = D1:72 D2:72

u = from 0 to (2*PI) D1
v = from 0 to (2*PI) D2

a = 10.0
b = rand2(0.5, a)

x = (a + b*cos(v))*sin(u)
y = b*sin(v) + if(sin(v) > 0, 10, -10)
z = (a + b*cos(v))*cos(u)

(5)轮子

vertices = D1:72 D2:72

u = from 0 to (2*PI) D1
v = from 0 to (2*PI) D2

a = 10.0
b = rand2(0.5, a)

x = (a + b*cos(v))*sin(u)
y = b*sin(2*v)
z = (a + b*cos(v))*cos(u)

(6)tore de klein

#http://www.mathcurve.com/surfaces/klein/toredeklein.shtml

vertices = D1:100 D2:100
u = from 0 to (PI*2) D1
v = from 0 to (PI*2) D2

a = rand2(1, 10)
b = rand2(1, 10)

k = rand_int2(1, 20)
k = k / 2

x = (a+b*cos(v))*cos(u)
z = (a+b*cos(v))*sin(u)
y = b*sin(v)*cos(k*u)

(7)拧着的圆环

#http://www.mathcurve.com/surfaces/tore/tore.shtml
vertices = D1:100 D2:100
u = from 0 to (PI*2) D1
v = from 0 to (PI*2) D2
a = rand2(1, 10)
b = rand2(0.5, a)

t = sqrt(a*a - b*b)
e = rand2(-2,2)

x = t*sin(v)*cos(u) - e*(b + a*cos(v))*sin(u)
z = t*sin(v)*sin(u) + e*(b + a*cos(v))*cos(u)
y = b*sin(v)

(8)多圈的环

vertices = D1:100 D2:100
u = from 0 to (2*PI) D1
v = from 0 to (2*PI) D2

a = sin(u)
b = cos(u)

c = sin(v)
d = cos(v)

r = 3 + c + b
o = 2 * v

x = r*sin(o)
y = a + 2*d
z = r*cos(o)

x = x*5
y = y*5
z = z*5

(9)偏圆环

vertices = D1:100 D2:100
u = from 0 to (2*PI) D1
v = from 0 to (2*PI) D2

a = rand2(5, 10)
c = rand2(1, a/2)
b = sqrt(a*a - c*c)
d = rand2(1, 10)

w = a - c*cos(u)*cos(v)

x = d*(c - a*cos(u)*cos(v)) + b*b*cos(u)
y = b*sin(u)*(a - d*cos(v))
z = b*sin(v)*(c*cos(u) - d)

x = x/w
y = y/w
z = z/w

 

(10)最后再补充下,圆环可以看做是一个圆圈绕一个轴旋转生成的,所以可以有以下脚本代码

vertices = D1:100 D2:100

u = from (0) to (2*PI) D1
v = from 0 to (2*PI) D2

r = 2
m = rand2(r, r*10)

n = r*cos(u) + m
y = r*sin(u)

x = n*cos(v)
z = n*sin(v)

 

 (11)补充一种环曲面:Bohemian

#http://http://www.mathcurve.com/surfaces/boheme/boheme.shtml

vertices = D1:100 D2:100

u = from 0 to (2*PI) D1
v = from 0 to (PI*2) D2

a = rand2(1, 10)
b = rand2(1, 10)

x = a*cos(u)
y = b*cos(v)
z = a*sin(u) + b*sin(v)

转载于:https://www.cnblogs.com/iflewless/p/3901132.html

基于Spring Boot搭建的一个多功能在线学习系统的实现细节。系统分为管理员和用户两个主要模块。管理员负责视频、文件和文章资料的管理以及系统运营维护;用户则可以进行视频播放、资料下载、参与学习论坛并享受个性化学习服务。文中重点探讨了文件下载的安全性和性能优化(如使用Resource对象避免内存溢出),积分排行榜的高效实现(采用Redis Sorted Set结构),敏感词过滤机制(利用DFA算法构建内存过滤树)以及视频播放的浏览器兼容性解决方案(通过FFmpeg调整MOOV原子位置)。此外,还提到了权限管理方面自定义动态加载器的应用,提高了系统的灵活性和易用性。 适合人群:对Spring Boot有一定了解,希望深入理解其实际应用的技术人员,尤其是从事在线教育平台开发的相关从业者。 使用场景及目标:适用于需要快速搭建稳定高效的在线学习平台的企业或团队。目标在于提供一套完整的解决方案,涵盖从资源管理到用户体验优化等多个方面,帮助开发者更好地理解和掌握Spring Boot框架的实际运用技巧。 其他说明:文中不仅提供了具体的代码示例和技术思路,还分享了许多实践经验教训,对于提高项目质量有着重要的指导意义。同时强调了安全性、性能优化等方面的重要性,确保系统能够应对大规模用户的并发访问需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值