Rearrangement inequality

数学中的排列不等式及其应用
排列不等式在数学中是一个基本的不等式,适用于任意实数的排列。本文详细阐述了该不等式的原理,并展示了其在算术平均与几何平均不等式、柯西-施瓦茨不等式以及切比雪夫求和不等式中的应用。通过证明过程,我们了解了如何利用排列不等式解决实际问题。
 
 

In mathematics, the rearrangement inequality[1] states that

x_ny_1 + \cdots + x_1y_n \le x_{\sigma (1)}y_1 + \cdots + x_{\sigma (n)}y_n \le x_1y_1 + \cdots + x_ny_n

for every choice of real numbers

x_1\le\cdots\le x_n\quad\text{and}\quad y_1\le\cdots\le y_n

and every permutation

x_{\sigma(1)},\dots,x_{\sigma(n)}\,

of x1, . . ., xn. If the numbers are different, meaning that

x_1<\cdots<x_n\quad\text{and}\quad y_1<\cdots<y_n,

then the lower bound is attained only for the permutation which reverses the order, i.e. σ(i) = n − i + 1 for all i = 1, ..., n, and the upper bound is attained only for the identity, i.e. σ(i) = i for all i = 1, ..., n.

Note that the rearrangement inequality makes no assumptions on the signs of the real numbers.

Applications

Many famous inequalities can be proved by the rearrangement inequality, such as the arithmetic mean – geometric mean inequality, the Cauchy–Schwarz inequality, and Chebyshev's sum inequality.

Proof

The lower bound follows by applying the upper bound to

-x_n\le\cdots\le-x_1.

Therefore, it suffices to prove the upper bound. Since there are only finitely many permutations, there exists at least one for which

x_{\sigma (1)}y_1 + \cdots + x_{\sigma (n)}y_n

is maximal. In case there are several permutations with this property, let σ denote one with the highest number of fixed points.

We will now prove by contradiction, that σ has to be the identity (then we are done). Assume that σ is not the identity. Then there exists a j in {1, ..., n − 1} such that σ(j) ≠ j and σ(i) = i for all i in {1, ..., j − 1}. Hence σ(j) > j and there exists k in {j + 1, ..., n} with σ(k) = j. Now

j<k\Rightarrow y_j\le y_k \qquad\text{and}\qquad j<\sigma(j)\Rightarrow x_j\le x_{\sigma(j)}.\quad(1)

Therefore,

0\le(x_{\sigma(j)}-x_j)(y_k-y_j). \quad(2)

Expanding this product and rearranging gives

x_{\sigma(j)}y_j+x_jy_k\le x_jy_j+x_{\sigma(j)}y_k\,, \quad(3)

hence the permutation

\tau(i):=\begin{cases}i&\text{for }i\in\{1,\ldots,j\},\\ \sigma(j)&\text{for }i=k,\\ \sigma(i)&\text{for }i\in\{j+1,\ldots,n\}\setminus\{k\},\end{cases}

which arises from σ by exchanging the values σ(j) and σ(k), has at least one additional fixed point compared to σ, namely at j, and also attains the maximum. This contradicts the choice of σ.

If

x_1<\cdots<x_n\quad\text{and}\quad y_1<\cdots<y_n,

then we have strict inequalities at (1), (2), and (3), hence the maximum can only be attained by the identity, any other permutation σ cannot be optimal.

转载于:https://www.cnblogs.com/jiongjiong-mengmeng/archive/2013/04/14/3019710.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值