UVa10003 Cutting Sticks

本文介绍了一种解决切割木棍问题的方法,通过定义d(i,j)为从i到j的最小切割费用,并利用记忆化搜索算法求得d(0,n+1)作为最终答案,实现了O(n^3)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  考虑d(i,j)表示切割点i到j这段距离的最小花费,于是d(i,j)=min(d(i,k)+d(k,j))+a[j]-a[i] ,其中j<k<i,边界条件d(i,i)=d(i,i+1)=0,最终求d(0,n+1),复杂度o(n^3),可采用记忆化搜索。

/*----UVa10003 Cutting Sticks
 设d(i,j)为切割木棍(i,j)的最小费用,则d(i,j)=a[j]-a[i]+min{d(i,k)+d(k,j)} i<k<=j;最终求d(0,n+1)
 为了方便,可以采用记忆化搜索
*/
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
#define INF 0x3f3f3f3f
const int maxn =50+5;

int n, L,curr;
int dp[maxn][maxn],a[maxn];

int dfs(int i, int j){
	if (j - i <= 1) return  0;
	int &ans = dp[i][j];
	if (ans >= 0) return ans;
	ans = INF;
	for (int k = i + 1; k < j; k++){
		ans = min(ans, dfs(i, k) + dfs(k, j) + a[j] - a[i]);
	}
	return ans;
}
int main(){
	while (scanf("%d", &L)&&L){
		scanf("%d", &n);
		a[0] = 0, a[n + 1] = L;
		for (int i = 1; i <= n; i++)
			scanf("%d", &a[i]);
		memset(dp, -1, sizeof(dp));
		printf("The minimum cutting is %d.\n", dfs(0, n + 1));
	}
	return 0;
}

  

转载于:https://www.cnblogs.com/td15980891505/p/5791291.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值