HDU 5988 Coding Contest 最小费用流 cost->double

本文介绍了一个编码竞赛中的实际问题:如何让参赛者在获取午餐的同时最小化因路径上的电线被触碰而导致网络崩溃的可能性。通过使用最小费用最大流算法解决该问题,并给出了具体的实现代码。

Problem Description 
A coding contest will be held in this university, in a huge playground. The whole playground would be divided into N blocks, and there would be M directed paths linking these blocks. The i-th path goes from the u_i-th block to the v_i-th block. Your task is to solve the lunch issue. According to the arrangement, there are s_i competitors in the i-th block. Limited to the size of table, b_i bags of lunch including breads, sausages and milk would be put in the i-th block. As a result, some competitors need to move to another block to access lunch. However, the playground is temporary, as a result there would be so many wires on the path. 
For the i-th path, the wires have been stabilized at first and the first competitor who walker through it would not break the wires. Since then, however, when a person go through the i - th path, there is a chance of p_i to touch 
the wires and affect the whole networks. Moreover, to protect these wires, no more than c_i competitors are allowed to walk through the i-th path. 
Now you need to find a way for all competitors to get their lunch, and minimize the possibility of network crashing.

Input 
The first line of input contains an integer t which is the number of test cases. Then t test cases follow. 
For each test case, the first line consists of two integers N (N ≤ 100) and M (M ≤ 5000). Each of the next N lines contains two integers si and b_i (s_i , b_i ≤ 200). 
Each of the next M lines contains three integers u_i , v_i and c_i(c_i ≤ 100) and a float-point number p_i(0 < p_i < 1). 
It is guaranteed that there is at least one way to let every competitor has lunch.

Output 
For each turn of each case, output the minimum possibility that the networks would break down. Round it to 2 digits.

#include <bits/stdc++.h>
#define PI acos(-1.0)
#define mem(a,b) memset((a),b,sizeof(a))
#define TS printf("!!!\n")
#define pb push_back
#define inf 1e9
//std::ios::sync_with_stdio(false);
using namespace std;
//priority_queue<int,vector<int>,greater<int>> que;
const double EPS = 1.0e-8;
const double eps = 1.0e-8;
typedef pair<int, int> pairint;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 205;
const int  maxm = 300;
//next_permutation
int level[205];
int Si, Ei, Ci;
struct Edge
{
        int from, to, cap, flow;
        double cost;
        Edge() {}
        Edge(int f, int t, int c, int fl, double co): from(f), to(t), cap(c), flow(fl), cost(co) {}
};
struct MCMF
{
        int n, m, s, t;
        vector<Edge>edges;
        vector<int>g[maxn];
        bool inq[maxn];
        double d[maxn];
        int p[maxn];
        int a[maxn];
        void init(int n, int s, int t)
        {
                this->n = n;
                this->s = s;
                this->t = t;
                edges.clear();
                for (int i = 0; i <= n; i++)
                {
                        g[i].clear();
                }
        }
        void AddEdge(int from, int to, int cap, double cost)
        {
                edges.push_back(Edge(from, to, cap, 0, cost));
                edges.push_back(Edge(to, from, 0, 0, -cost));
                m = edges.size();
                g[from].push_back(m - 2);
                g[to].push_back(m - 1);
        }
        bool BellmanFord(int &flow, double &cost)
        {
                for (int i = 0; i <= n; i++)
                {
                        d[i] = inf;
                }
                memset(inq, 0, sizeof(inq));
                d[s] = 0, a[s] = inf, inq[s] = 1, p[s] = 0;
                queue<int>q;
                q.push(s);
                while (!q.empty())
                {
                        int u = q.front();
                        q.pop();
                        inq[u] = 0;
                        for (int i = 0; i < g[u].size(); i++)
                        {
                                Edge &e = edges[g[u][i]];
                                if (e.cap > e.flow && d[e.to] > d[u] + e.cost + eps)
                                {
                                        d[e.to] = d[u] + e.cost;
                                        p[e.to] = g[u][i];
                                        a[e.to] = min(a[u], e.cap - e.flow);
                                        if (!inq[e.to])
                                        {
                                                q.push(e.to);
                                                inq[e.to] = 1;
                                        }
                                }
                        }
                }
                if (d[t] == inf)
                {
                        return false;
                }
                flow += a[t];
                cost += a[t] * d[t];
                int u = t;
                while (u != s)
                {
                        edges[p[u]].flow += a[t];
                        edges[p[u] ^ 1].flow -= a[t];
                        u = edges[p[u]].from;
                }
                return true;
        }
        double Min_cost(int &flow, double &cost)
        {
                flow = 0, cost = 0;
                while (BellmanFord(flow, cost));
                return cost;
        }
} mc;
int main()
{
        int time;
        scanf("%d", &time);
        while (time--)
        {

                int n, m;
                int a, b;
                cin >> n >> m;
                int s = 0;
                int t = 2 * n + 1;
                mc.init(n * 2 + 1, s, t);
                for (int i = 1; i <= n; i++)
                {
                        scanf("%d %d", &a, &b);
                        //cin >> a >> b;
                        if (a == b)
                        {
                                continue;
                        }
                        else
                        {
                                if (a > b)
                                {
                                        mc.AddEdge(s, i, a - b, 0);
                                }
                                else
                                {
                                        mc.AddEdge(i, t, b - a, 0);
                                }
                        }
                }
                int u, v, c;
                double p;
                for (int i = 1; i <= m; i++)
                {
                        scanf("%d %d %d %lf", &u, &v, &c, &p);
                        //cin >> u >> v >> c >> p;
                        p = -log(1 - p);
                        if (c == 0)
                        {
                                continue;
                        }
                        else if (c == 1)
                        {
                                mc.AddEdge(u, v, 1, 0);
                        }
                        else
                        {
                                mc.AddEdge(u, v, 1, 0);
                                mc.AddEdge(u, v, c - 1, p);
                        }
                }
                int flow = 0;
                double cost = 0;
                cost = mc.Min_cost(flow, cost);
                cost = exp(-cost);
                printf("%.2f\n", 1 - cost);
        }
}

 

转载于:https://www.cnblogs.com/Aragaki/p/7678264.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值