[codeforces 339]C. Xenia and Weights

本文针对CodeForces339 C题“Xenia and Weights”提供了详细的解题思路。通过动态规划的方法解决如何放置不同重量的砝码以确保每次放置后一侧的总重量始终大于另一侧的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[codeforces 339]C. Xenia and Weights

试题描述

Xenia has a set of weights and pan scales. Each weight has an integer weight from 1 to 10 kilos. Xenia is going to play with scales and weights a little. For this, she puts weights on the scalepans, one by one. The first weight goes on the left scalepan, the second weight goes on the right scalepan, the third one goes on the left scalepan, the fourth one goes on the right scalepan and so on. Xenia wants to put the total of m weights on the scalepans.

Simply putting weights on the scales is not interesting, so Xenia has set some rules. First, she does not put on the scales two consecutive weights of the same weight. That is, the weight that goes i-th should be different from the (i + 1)-th weight for any i(1 ≤ i < m). Second, every time Xenia puts a weight on some scalepan, she wants this scalepan to outweigh the other one. That is, the sum of the weights on the corresponding scalepan must be strictly greater than the sum on the other pan.

You are given all types of weights available for Xenia. You can assume that the girl has an infinite number of weights of each specified type. Your task is to help Xenia lay m weights on ​​the scales or to say that it can't be done.

输入

The first line contains a string consisting of exactly ten zeroes and ones: the i-th (i ≥ 1) character in the line equals "1" if Xenia has i kilo weights, otherwise the character equals "0". The second line contains integer m (1 ≤ m ≤ 1000).

输出

In the first line print "YES", if there is a way to put m weights on the scales by all rules. Otherwise, print in the first line "NO". If you can putm weights on the scales, then print in the next line m integers — the weights' weights in the order you put them on the scales.

If there are multiple solutions, you can print any of them.

输入示例

0000000101
3

输出示例

YES
8 10 8

数据规模及约定

见“输入

题解

一开始我想贪心,但强大的 cf 数据一巴掌把我打了回来。于是就开始想怎么 dp,发现可以设 f(i, j, k) 表示添加第 i 个砝码,使得砝码 i 所对应的天平中总质量比另一个天平总质量多 j,且当前砝码质量为 k,那么就可以转移了,枚举一下当前添加的砝码的质量,状态数 O(100m),转移 O(10),总时间复杂度相当于 O(m2)。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std;

const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
    if(Head == Tail) {
        int l = fread(buffer, 1, BufferSize, stdin);
        Tail = (Head = buffer) + l;
    }
    return *Head++;
}
int read() {
    int x = 0, f = 1; char c = getchar();
    while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
    while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
    return x * f;
}

#define maxn 15
#define maxm 1010
char has[maxn];
int m, f[maxm][maxn][maxn], ans[maxm], cnt;
struct Node {
	int i, j, k;
	Node() {}
	Node(int _1, int _2, int _3): i(_1), j(_2), k(_3) {}
} fa[maxm][maxn][maxn];

int main() {
	scanf("%s", has + 1);
	m = read();
	
	for(int j = 1; j <= 10; j++)
		if(has[j] == '1') f[1][j][j] = 1;
	for(int i = 1; i <= m; i++)
		for(int j = 1; j <= 10; j++)
			for(int k = 1; k <= 10; k++)
				fa[i][j][k] = Node(-1, -1, -1);
	for(int i = 2; i <= m; i++)
		for(int j = 1; j <= 9; j++)
			for(int k = 1; k <= 10; k++)
				for(int x = 1; x <= 10; x++)
					if(has[x] == '1' && x != k && x > j && f[i-1][x-j][k])
						f[i][j][x] = 1, fa[i][j][x] = Node(i-1, x-j, k);
	
	bool ok = 0;
	for(int j = 1; j <= 10; j++) {
		for(int k = 1; k <= 10; k++)
			if(f[m][j][k]) {
				ok = 1;
				Node u = Node(m, j, k);
				while(u.i >= 0) {
					ans[++cnt] = u.k;
					u = fa[u.i][u.j][u.k];
				}
				break;
			}
		if(ok) break;
	}
	
	if(!ok) return puts("NO"), 0;
	puts("YES");
	for(int i = cnt; i > 1; i--) printf("%d ", ans[i]); printf("%d\n", ans[1]);
	
	return 0;
}
/*
1111000011
16
1111000011
1
*/

 

转载于:https://www.cnblogs.com/xiao-ju-ruo-xjr/p/5833826.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值