102. Binary Tree Level Order Traversal Java Solutions

本文详细介绍了如何使用队列实现二叉树的层次遍历,并提供了代码示例及解释。

Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, level by level).

For example:
Given binary tree {3,9,20,#,#,15,7},

    3
   / \
  9  20
    /  \
   15   7

return its level order traversal as:

[
  [3],
  [9,20],
  [15,7]
]

confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.

Subscribe to see which companies asked this question

 

 1 /**
 2  * Definition for a binary tree node.
 3  * public class TreeNode {
 4  *     int val;
 5  *     TreeNode left;
 6  *     TreeNode right;
 7  *     TreeNode(int x) { val = x; }
 8  * }
 9  */
10 public class Solution {
11     public List<List<Integer>> levelOrder(TreeNode root) {
12         List<List<Integer>> res = new ArrayList<List<Integer>>();
13         Queue<TreeNode> q = new LinkedList<TreeNode>();
14         if(root == null) return res;
15         q.add(root);
16         while(!q.isEmpty()){
17             List<Integer> tmp = new ArrayList<Integer>();
18             int size = q.size();
19             for(int i = 0; i< size; i++){
20                 TreeNode node = q.poll();
21                 tmp.add(node.val);
22                 if(node.left != null) q.add(node.left);
23                 if(node.right != null) q.add(node.right);
24             }
25             res.add(tmp);
26             
27         }
28         return res;
29     }
30 }

 

java 中queue 的操作:

add    增加一个元索                     如果队列已满,则抛出一个IIIegaISlabEepeplian异常
remove   移除并返回队列头部的元素    如果队列为空,则抛出一个NoSuchElementException异常
element  返回队列头部的元素             如果队列为空,则抛出一个NoSuchElementException异常
offer       添加一个元素并返回true       如果队列已满,则返回false
poll         移除并返问队列头部的元素    如果队列为空,则返回null
peek       返回队列头部的元素             如果队列为空,则返回null
put         添加一个元素                      如果队列满,则阻塞
take        移除并返回队列头部的元素     如果队列为空,则阻

转载于:https://www.cnblogs.com/guoguolan/p/5452617.html

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问题中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值