【深度学习笔记】第 1 课:从机器学习到深度学习

本文介绍了机器学习的基础概念,包括逻辑回归分类器的工作原理及其训练过程。逻辑回归是一种线性分类器,通过执行线性函数生成预测。文章还详细解释了如何使用softmax函数将预测结果转换为概率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  这个课程分为4个部分,首先需要彻底通过 端对端 的方法来训练第一个简单模型,这样才能打好基础,为此,将讨论 逻辑分类、随机优化,和关于训练模型的通用数据实践。

  下一步训练第一个深度网络,也将学到利用正则化技术去训练更大的模型,第三部分,将深入介绍图像和卷积模型,第四部分,是关于一般的文本和序列,我们将训练 嵌入和递归模型。

  Classification is the task of taking an input.分类是一种给定输入和标记的任务。分类或者预测prediction是机器学习的基石.

 

  下面开始训练一个逻辑回归分类器

  逻辑回归分类器是一种线性分类器,它接受输入,比如图片的像素,对输入执行一个线性函数来生成预测。线性函数实际上就是一个巨大的矩阵相乘,

它把输入当成一个大的矢量 用X表示,然后乘以一个矩阵产生预测,每个类一个输出。自始至终,我们将输入表示为X   权重表示为W   偏置项表示为b。

  w 和 b 则是机器学习的用武之地,训练这个模型,意味着我们想要尝试找到一个权重和偏置,使得预测的结果表现的很好。

  我们怎么用这些结果去执行分类呢?

  我们把每张图片当成输入且只有一个标签,因此我们将这些结果转化为概率,这将使得正确分类的概率非常接近1,而其他分类的概率接近于0。

 

   把这个结果转化为概率的方法是:(如下)

  使用softmax函数,上图中间是他的表达式,除了公式,关于它最重要的是,它可以将任何的结果转化成正确的概率。正确的概率的总和是1,且当结果较大时,概率较大,结果较小时,概率较小。

  在逻辑回归的概念中, scores 结果常被称为 logits。

转载于:https://www.cnblogs.com/custer/p/6337591.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值