[实变函数]2.3 开集 (open set), 闭集 (closed set), 完备集 (complete set)

本文深入探讨了集合的开闭性质、紧集、自密集集与完备集的概念及其相互关系。通过数学定义与实例分析,详细解释了开集、闭集的定义与对偶性,以及紧集、自密集集与完备集的特征与判断方法。此外,还提供了具体例子来说明这些概念的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

   1        $$\beex \bea E\mbox{ 是开集}&\lra E^o=E\\        &\lra \forall\ P_0\in E,\ \exists\ U(P_0)\subset E.        \eea        \eeex$$    

   2        $$\beex \bea E\mbox{ 是闭集}&\lra    E'\subset E\\    &\lra E^-=E\\    &\lra \mbox{若 }E\ni P_n\to P_0,\mbox{ 则 }P_0\in E.        \eea        \eeex$$    

   3 对 $E\subset \bbR^n$, $E^o$ 是开集, $E',E^-$ 是闭集.    

   

   4 (开集、闭集的对偶性):        $$\bex        E\mbox{ 是开 (闭) 集}\lra E^c\mbox{ 是闭 (开) 集}.        \eex$$        证明: 设 $E$ 是开集, 往证 $E^c$ 是闭集: $E^{c-}=E^{oc}=E^c$.    

       设 $E$ 是闭集, 往证 $E^c$ 是开集: $E^{co}=E^{-c}=E^c$.    

   

   

   5 任意多个开集之并是开集, 有限多个开集之交是开集;    

       任意多个闭集之交是闭集, 有限多个闭集之并是闭集.    

       证明: 设 $\sed{E_\lambda}_{\lambda\in \vLa}$ 是开集族, 往证 $\dps{\cup_{\lambda\in \vLa}E_\lambda}$ 是开集:        $$\beex \bea P_0\in \cup_{\lambda\in \vLa}E_\lambda        &\ra \exists\ \lambda_0\in \vLa,\st P_0\in E_{\lambda_0}\\        &\ra        \exists\ U(P_0)\subset E_{\lambda_0}\subset \cup_{\lambda\in \vLa}E_\lambda.        \eea        \eeex$$    

       设 $\sed{E_i}_{i=1}^n$ 是开集, 往证 $\dps{\cap_{i=1}^m E_i}$ 是开集:        $$\beex \bea P_0\in \cap_{i=1}^m E_i        &\ra \forall\ i,\ P_0\in E_i\\        &\ra \forall\ i,\ \exists\ U(P_0,\delta_i)\subset E_i\\        &\ra U(P_0,\delta)\subset \cap_{i=1}^m E_i\quad\sex{\delta=\min \delta_i}.        \eea        \eeex$$    

       另外两个直接是 De Morgan 公式的推论.    

   

   6 例:        $$\bex        \cap_{n=1}^\infty\sex{a-\frac{1}{n},b+\frac{1}{n}}=[a,b],\quad \cup_{n=1}^\infty\sez{a+\frac{1}{n},b-\frac{1}{n}}=(a,b).        \eex$$    

   

   7 (正规性) 设两闭集 $F_1,F_2$ 不交, 则存在开集 $O_1\supset F_1, O_2\supset F_2$, 使得 

    $O_1\cap O_2=\vno$.    

   

   8 思考: 两闭集 $F_1,F_2$ 不交, 能否推出 $d(F_1,F_2)=0$?    

       答案: 不能! 比如 $\bbR^2$ 中的两个闭集:    $$\bex    F_1=\sed{(x,0);x\in\bbR},\quad F_2=\sed{(x,e^x);x\in\bbR}.    \eex$$    

   

   9        $$\beex \bea E\mbox{ 是紧集}&\lra \sex{E\subset \cup_{\lambda\in \vLa}O_\lambda\ra E\subset \cup_{i=1}^m O_i}\\        &\lra E\mbox{ 是有界闭集}.        \eea        \eeex$$        证明: $\la$ Heine-Borel 有限覆盖定理.    

           $\ra$ $E$ 有界:        $$\bex        E\subset \cup_{P\in M}U(P,1)\ra         E\subset U(P_1,1)\cup\cdots\cup U(P_m,1).        \eex$$

        $E$ 是闭集:        $$\beex \bea P_0\in E^c&\ra \forall\ P\in E,\ \delta_P=d(P,P_0)>0\\        &\ra E\subset \cup_{P\in M}U\sex{P,\frac{\delta_P}{2}}\\        &\ra E\subset U\sex{P_1,\frac{\delta_{P_1}}{2}}\cup        \cdots\cup U\sex{P_m,\frac{\delta_{P_m}}{2}}\\        &\ra U\sex{P,\delta}\subset M^c\quad\sex{\delta=\frac{1}{2}\min \delta_{P_i}}.        \eea        \eeex$$    

   

   10    $$\beex \bea E\mbox{ 是自密集 (dense-in-itself)}        &\lra E\subset E'\\        &\lra E\mbox{ 没有孤立点};        \eea        \eeex$$        $$\beex \bea E\mbox{ 是完备集 (complete set)}&\lra E=E'\\        &\lra E\mbox{ 是自密闭集}.        \eea        \eeex$$            (1) 例: $\vno$ 是自密集, 也是完备集; 

        在 $\bbR$ 中, $\bbQ$ 是自密集, $[a,b]$ 和 $\bbR$ 是完备集.            

   11 作业: Page 51, T 7.    

 

转载于:https://www.cnblogs.com/zhangzujin/p/3549120.html

/* * Copyright (c) 2020 - 2025 Renesas Electronics Corporation and/or its affiliates * * SPDX-License-Identifier: BSD-3-Clause */ /*******************************************************************************************************************//** * @ingroup RENESAS_TRANSFER_INTERFACES * @defgroup TRANSFER_API Transfer Interface * * @brief Interface for data transfer functions. * * @section TRANSFER_API_SUMMARY Summary * The transfer interface supports background data transfer (no CPU intervention). * * * @{ **********************************************************************************************************************/ #ifndef R_TRANSFER_API_H #define R_TRANSFER_API_H /*********************************************************************************************************************** * Includes **********************************************************************************************************************/ /* Common error codes and definitions. */ #include "bsp_api.h" /* Common macro for FSP header files. There is also a corresponding FSP_FOOTER macro at the end of this file. */ FSP_HEADER /********************************************************************************************************************** * Macro definitions **********************************************************************************************************************/ #define TRANSFER_SETTINGS_MODE_BITS (30U) #define TRANSFER_SETTINGS_SIZE_BITS (28U) #define TRANSFER_SETTINGS_SRC_ADDR_BITS (26U) #define TRANSFER_SETTINGS_CHAIN_MODE_BITS (22U) #define TRANSFER_SETTINGS_IRQ_BITS (21U) #define TRANSFER_SETTINGS_REPEAT_AREA_BITS (20U) #define TRANSFER_SETTINGS_DEST_ADDR_BITS (18U) /********************************************************************************************************************** * Typedef definitions **********************************************************************************************************************/ /** Transfer control block. Allocate an instance specific control block to pass into the transfer API calls. */ typedef void transfer_ctrl_t; #ifndef BSP_OVERRIDE_TRANSFER_MODE_T /** Transfer mode describes what will happen when a transfer request occurs. */ typedef enum e_transfer_mode { /** In normal mode, each transfer request causes a transfer of @ref transfer_size_t from the source pointer to * the destination pointer. The transfer length is decremented and the source and address pointers are * updated according to @ref transfer_addr_mode_t. After the transfer length reaches 0, transfer requests * will not cause any further transfers. */ TRANSFER_MODE_NORMAL = 0, /** Repeat mode is like normal mode, except that when the transfer length reaches 0, the pointer to the * repeat area and the transfer length will be reset to their initial values. If DMAC is used, the * transfer repeats only transfer_info_t::num_blocks times. After the transfer repeats * transfer_info_t::num_blocks times, transfer requests will not cause any further transfers. If DTC is * used, the transfer repeats continuously (no limit to the number of repeat transfers). */ TRANSFER_MODE_REPEAT = 1, /** In block mode, each transfer request causes transfer_info_t::length transfers of @ref transfer_size_t. * After each individual transfer, the source and destination pointers are updated according to * @ref transfer_addr_mode_t. After the block transfer is complete, transfer_info_t::num_blocks is * decremented. After the transfer_info_t::num_blocks reaches 0, transfer requests will not cause any * further transfers. */ TRANSFER_MODE_BLOCK = 2, /** In addition to block mode features, repeat-block mode supports a ring buffer of blocks and offsets * within a block (to split blocks into arrays of their first data, second data, etc.) */ TRANSFER_MODE_REPEAT_BLOCK = 3 } transfer_mode_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_SIZE_T /** Transfer size specifies the size of each individual transfer. * Total transfer length = transfer_size_t * transfer_length_t */ typedef enum e_transfer_size { TRANSFER_SIZE_1_BYTE = 0, ///< Each transfer transfers a 8-bit value TRANSFER_SIZE_2_BYTE = 1, ///< Each transfer transfers a 16-bit value TRANSFER_SIZE_4_BYTE = 2, ///< Each transfer transfers a 32-bit value TRANSFER_SIZE_8_BYTE = 3 ///< Each transfer transfers a 64-bit value } transfer_size_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_ADDR_MODE_T /** Address mode specifies whether to modify (increment or decrement) pointer after each transfer. */ typedef enum e_transfer_addr_mode { /** Address pointer remains fixed after each transfer. */ TRANSFER_ADDR_MODE_FIXED = 0, /** Offset is added to the address pointer after each transfer. */ TRANSFER_ADDR_MODE_OFFSET = 1, /** Address pointer is incremented by associated @ref transfer_size_t after each transfer. */ TRANSFER_ADDR_MODE_INCREMENTED = 2, /** Address pointer is decremented by associated @ref transfer_size_t after each transfer. */ TRANSFER_ADDR_MODE_DECREMENTED = 3 } transfer_addr_mode_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_REPEAT_AREA_T /** Repeat area options (source or destination). In @ref TRANSFER_MODE_REPEAT, the selected pointer returns to its * original value after transfer_info_t::length transfers. In @ref TRANSFER_MODE_BLOCK and @ref TRANSFER_MODE_REPEAT_BLOCK, * the selected pointer returns to its original value after each transfer. */ typedef enum e_transfer_repeat_area { /** Destination area repeated in @ref TRANSFER_MODE_REPEAT or @ref TRANSFER_MODE_BLOCK or @ref TRANSFER_MODE_REPEAT_BLOCK. */ TRANSFER_REPEAT_AREA_DESTINATION = 0, /** Source area repeated in @ref TRANSFER_MODE_REPEAT or @ref TRANSFER_MODE_BLOCK or @ref TRANSFER_MODE_REPEAT_BLOCK. */ TRANSFER_REPEAT_AREA_SOURCE = 1 } transfer_repeat_area_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_CHAIN_MODE_T /** Chain transfer mode options. * @note Only applies for DTC. */ typedef enum e_transfer_chain_mode { /** Chain mode not used. */ TRANSFER_CHAIN_MODE_DISABLED = 0, /** Switch to next transfer after a single transfer from this @ref transfer_info_t. */ TRANSFER_CHAIN_MODE_EACH = 2, /** Complete the entire transfer defined in this @ref transfer_info_t before chaining to next transfer. */ TRANSFER_CHAIN_MODE_END = 3 } transfer_chain_mode_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_IRQ_T /** Interrupt options. */ typedef enum e_transfer_irq { /** Interrupt occurs only after last transfer. If this transfer is chained to a subsequent transfer, * the interrupt will occur only after subsequent chained transfer(s) are complete. * @warning DTC triggers the interrupt of the activation source. Choosing TRANSFER_IRQ_END with DTC will * prevent activation source interrupts until the transfer is complete. */ TRANSFER_IRQ_END = 0, /** Interrupt occurs after each transfer. * @note Not available in all HAL drivers. See HAL driver for details. */ TRANSFER_IRQ_EACH = 1 } transfer_irq_t; #endif #ifndef BSP_OVERRIDE_TRANSFER_CALLBACK_ARGS_T /** Callback function parameter data. */ typedef struct st_transfer_callback_args_t { void const * p_context; ///< Placeholder for user data. Set in @ref transfer_api_t::open function in ::transfer_cfg_t. } transfer_callback_args_t; #endif /** Driver specific information. */ typedef struct st_transfer_properties { uint32_t block_count_max; ///< Maximum number of blocks uint32_t block_count_remaining; ///< Number of blocks remaining uint32_t transfer_length_max; ///< Maximum number of transfers uint32_t transfer_length_remaining; ///< Number of transfers remaining } transfer_properties_t; #ifndef BSP_OVERRIDE_TRANSFER_INFO_T /** This structure specifies the properties of the transfer. * @warning When using DTC, this structure corresponds to the descriptor block registers required by the DTC. * The following components may be modified by the driver: p_src, p_dest, num_blocks, and length. * @warning When using DTC, do NOT reuse this structure to configure multiple transfers. Each transfer must * have a unique transfer_info_t. * @warning When using DTC, this structure must not be allocated in a temporary location. Any instance of this * structure must remain in scope until the transfer it is used for is closed. * @note When using DTC, consider placing instances of this structure in a protected section of memory. */ typedef struct st_transfer_info { union { struct { uint32_t : 16; uint32_t : 2; /** Select what happens to destination pointer after each transfer. */ transfer_addr_mode_t dest_addr_mode : 2; /** Select to repeat source or destination area, unused in @ref TRANSFER_MODE_NORMAL. */ transfer_repeat_area_t repeat_area : 1; /** Select if interrupts should occur after each individual transfer or after the completion of all planned * transfers. */ transfer_irq_t irq : 1; /** Select when the chain transfer ends. */ transfer_chain_mode_t chain_mode : 2; uint32_t : 2; /** Select what happens to source pointer after each transfer. */ transfer_addr_mode_t src_addr_mode : 2; /** Select number of bytes to transfer at once. @see transfer_info_t::length. */ transfer_size_t size : 2; /** Select mode from @ref transfer_mode_t. */ transfer_mode_t mode : 2; } transfer_settings_word_b; uint32_t transfer_settings_word; }; void const * volatile p_src; ///< Source pointer void * volatile p_dest; ///< Destination pointer /** Number of blocks to transfer when using @ref TRANSFER_MODE_BLOCK (both DTC an DMAC) or * @ref TRANSFER_MODE_REPEAT (DMAC only) or * @ref TRANSFER_MODE_REPEAT_BLOCK (DMAC only), unused in other modes. */ volatile uint16_t num_blocks; /** Length of each transfer. Range limited for @ref TRANSFER_MODE_BLOCK, @ref TRANSFER_MODE_REPEAT, * and @ref TRANSFER_MODE_REPEAT_BLOCK * see HAL driver for details. */ volatile uint16_t length; } transfer_info_t; #endif /** Driver configuration set in @ref transfer_api_t::open. All elements except p_extend are required and must be * initialized. */ typedef struct st_transfer_cfg { /** Pointer to transfer configuration options. If using chain transfer (DTC only), this can be a pointer to * an array of chained transfers that will be completed in order. */ transfer_info_t * p_info; void const * p_extend; ///< Extension parameter for hardware specific settings. } transfer_cfg_t; /** Select whether to start single or repeated transfer with software start. */ typedef enum e_transfer_start_mode { TRANSFER_START_MODE_SINGLE = 0, ///< Software start triggers single transfer. TRANSFER_START_MODE_REPEAT = 1 ///< Software start transfer continues until transfer is complete. } transfer_start_mode_t; /** Transfer functions implemented at the HAL layer will follow this API. */ typedef struct st_transfer_api { /** Initial configuration. * * @param[in,out] p_ctrl Pointer to control block. Must be declared by user. Elements set here. * @param[in] p_cfg Pointer to configuration structure. All elements of this structure * must be set by user. */ fsp_err_t (* open)(transfer_ctrl_t * const p_ctrl, transfer_cfg_t const * const p_cfg); /** Reconfigure the transfer. * Enable the transfer if p_info is valid. * * @param[in,out] p_ctrl Pointer to control block. Must be declared by user. Elements set here. * @param[in] p_info Pointer to a new transfer info structure. */ fsp_err_t (* reconfigure)(transfer_ctrl_t * const p_ctrl, transfer_info_t * p_info); /** Reset source address pointer, destination address pointer, and/or length, keeping all other settings the same. * Enable the transfer if p_src, p_dest, and length are valid. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[in] p_src Pointer to source. Set to NULL if source pointer should not change. * @param[in] p_dest Pointer to destination. Set to NULL if destination pointer should not change. * @param[in] num_transfers Transfer length in normal mode or number of blocks in block mode. In DMAC only, * resets number of repeats (initially stored in transfer_info_t::num_blocks) in * repeat mode. Not used in repeat mode for DTC. */ fsp_err_t (* reset)(transfer_ctrl_t * const p_ctrl, void const * p_src, void * p_dest, uint16_t const num_transfers); /** Enable transfer. Transfers occur after the activation source event (or when * @ref transfer_api_t::softwareStart is called if no peripheral event is chosen as activation source). * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. */ fsp_err_t (* enable)(transfer_ctrl_t * const p_ctrl); /** Disable transfer. Transfers do not occur after the activation source event (or when * @ref transfer_api_t::softwareStart is called if no peripheral event is chosen as the DMAC activation source). * @note If a transfer is in progress, it will be completed. Subsequent transfer requests do not cause a * transfer. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. */ fsp_err_t (* disable)(transfer_ctrl_t * const p_ctrl); /** Start transfer in software. * @warning Only works if no peripheral event is chosen as the DMAC activation source. * @note Not supported for DTC. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[in] mode Select mode from @ref transfer_start_mode_t. */ fsp_err_t (* softwareStart)(transfer_ctrl_t * const p_ctrl, transfer_start_mode_t mode); /** Stop transfer in software. The transfer will stop after completion of the current transfer. * @note Not supported for DTC. * @note Only applies for transfers started with TRANSFER_START_MODE_REPEAT. * @warning Only works if no peripheral event is chosen as the DMAC activation source. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. */ fsp_err_t (* softwareStop)(transfer_ctrl_t * const p_ctrl); /** Provides information about this transfer. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[out] p_properties Driver specific information. */ fsp_err_t (* infoGet)(transfer_ctrl_t * const p_ctrl, transfer_properties_t * const p_properties); /** Releases hardware lock. This allows a transfer to be reconfigured using @ref transfer_api_t::open. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. */ fsp_err_t (* close)(transfer_ctrl_t * const p_ctrl); /** To update next transfer information without interruption during transfer. * Allow further transfer continuation. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[in] p_src Pointer to source. Set to NULL if source pointer should not change. * @param[in] p_dest Pointer to destination. Set to NULL if destination pointer should not change. * @param[in] num_transfers Transfer length in normal mode or block mode. */ fsp_err_t (* reload)(transfer_ctrl_t * const p_ctrl, void const * p_src, void * p_dest, uint32_t const num_transfers); /** Specify callback function and optional context pointer and working memory pointer. * * @param[in] p_ctrl Control block set in @ref transfer_api_t::open call for this transfer. * @param[in] p_callback Callback function to register * @param[in] p_context Pointer to send to callback function * @param[in] p_callback_memory Pointer to volatile memory where callback structure can be allocated. * Callback arguments allocated here are only valid during the callback. */ fsp_err_t (* callbackSet)(transfer_ctrl_t * const p_ctrl, void (* p_callback)(transfer_callback_args_t *), void const * const p_context, transfer_callback_args_t * const p_callback_memory); } transfer_api_t; /** This structure encompasses everything that is needed to use an instance of this interface. */ typedef struct st_transfer_instance { transfer_ctrl_t * p_ctrl; ///< Pointer to the control structure for this instance transfer_cfg_t const * p_cfg; ///< Pointer to the configuration structure for this instance transfer_api_t const * p_api; ///< Pointer to the API structure for this instance } transfer_instance_t; /* Common macro for FSP header files. There is also a corresponding FSP_HEADER macro at the top of this file. */ FSP_FOOTER #endif /*******************************************************************************************************************//** * @} (end defgroup TRANSFER_API) **********************************************************************************************************************/ 这里存在 // 标准函数原型应类似: fsp_err_t R_TRANSFER_Open( transfer_ctrl_t * const p_ctrl, transfer_cfg_t const * const p_cfg);
最新发布
07-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值