概率与数学期望

前言:
曾经有人问过学长,是不是概率期望基本上都是用来做dp的
学长:当然不是了
然而我觉得,有很大一部分的概率期望都是与dp有关的

公式介绍

这一部分的知识并不是很难
掌握两大法宝即可

全概率公式

把样本空间S分成若干个不想交的部分B1,B2,B3,…,Bn,
则P(A)=P(A|B1)*P(B1)+P(A|B2)*P(B2)+…+P(A|Bn)*P(Bn)
这里的P(A|B)是指B事件发生的条件下,事件A发生的概率

其实ta的思想很简单:
比如,参加NOI,得到金牌,银牌,铜牌,当炮灰的概率分别是0.1,0.2,0.3,0.4,
在这种情况下,保送上清华的概率分别是1.0,0.8,0.5,0.1,
则被报送的总概率是0.1*1.0+0.2*0.8+0.3*0.5+0.4*0.1

使用全概率公式的关键就是划分时间空间
只有把所有情况不重复,不遗漏的进行分类,
并计算出每个事件的概率,才能得出正确的答案

数学期望

简单地说,随机变量X的数学期望EX就是所有可能值按概率加权的和

比如一个随机变量有1/2的概率等于1,1/3的概率等于2,1/6的概率等于3
那么这个随机变量的数学期望为
1/2*1+1/3*2+1/6*3
在非正式场合中,可以说这个随机变量“在平均情况下的值”为1/2*1+1/3*2+1/6*3

在解决和数学期望相关的题目时,大多数是可以直接考虑定义法解决
求出各个取值和对应的概率
当然,如果是等概率事件(所有事件的概率完全相等)
我们可以用:
各个情况之和/总情况数量(相当于求一个平均值,不是一般的好用啊)

如果遇到困难,我们可以考虑一下两个法宝:

  • 期望的线性性质:
    有限个随机变量之和的数学期望等于每个的数学期望之和
    即 E(X+Y)=EX+EY
  • 全期望公式:
    类似全概率公式,把所有情况不重复,不遗漏的分成若干类,每个计算数学期望,
    最后把这些数学期望按照每类的概率加权求和

转载于:https://www.cnblogs.com/wutongtong3117/p/7673064.html

资源下载链接为: https://pan.quark.cn/s/22ca96b7bd39 在 IT 领域,文档格式转换是常见需求,尤其在处理多种文件类型时。本文将聚焦于利用 Java 技术栈,尤其是 Apache POI 和 iTextPDF 库,实现 doc、xls(涵盖 Excel 2003 及 Excel 2007+)以及 txt、图片等格式文件向 PDF 的转换,并实现在线浏览功能。 先从 Apache POI 说起,它是一个强大的 Java 库,专注于处理 Microsoft Office 格式文件,比如 doc 和 xls。Apache POI 提供了 HSSF 和 XSSF 两个 API,其中 HSSF 用于读写老版本的 BIFF8 格式(Excel 97-2003),XSSF 则针对新的 XML 格式(Excel 2007+)。这两个 API 均具备读取和写入工作表、单元格、公式、样式等功能。读取 Excel 文件时,可通过创建 HSSFWorkbook 或 XSSFWorkbook 对象来打开相应格式的文件,进而遍历工作簿中的每个 Sheet,获取行和列数据。写入 Excel 文件时,创建新的 Workbook 对象,添加 Sheet、Row 和 Cell,即可构建新 Excel 文件。 再看 iTextPDF,它是一个用于生成和修改 PDF 文档的 Java 库,拥有丰富的 API。创建 PDF 文档时,借助 Document 对象,可定义页面尺寸、边距等属性来定制 PDF 外观。添加内容方面,可使用 Paragraph、List、Table 等元素将文本、列表和表格加入 PDF,图片可通过 Image 类加载插入。iTextPDF 支持多种字体和样式,可设置文本颜色、大小、样式等。此外,iTextPDF 的 TextRenderer 类能将 HTML、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值