[NOIP2016]愤怒的小鸟 D2 T3

游戏中小鸟轨迹算法
本文介绍了一款游戏中的数学问题,玩家需要通过发射小鸟来消灭小猪,文章详细阐述了如何利用数学方法确定最少需要发射多少只小鸟才能完成任务。

Description

Kiana最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如y=ax2+bx的曲线,其中a,b是Kiana指定的参数,且必须满足a<0。

当小鸟落回地面(即x轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi,yi)。

如果某只小鸟的飞行轨迹经过了(xi,yi),那么第i只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过(xi,yi),那么这只小鸟飞行的全过程就不会对第i只小猪产生任何影响。

例如,若两只小猪分别位于(1,3)和(3,3),Kiana可以选择发射一只飞行轨迹为y=-x2+4x的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有T个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

Input

第一行包含一个正整数T,表示游戏的关卡总数。

下面依次输入这T个关卡的信息。每个关卡第一行包含两个非负整数n,m,分别表示该关卡中的小猪数量和Kiana输入的神秘指令类型。接下来的n行中,第i行包含两个正实数(xi,yi),表示第i只小猪坐标为(xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果m=0,表示Kiana输入了一个没有任何作用的指令。

如果m=1,则这个关卡将会满足:至多用⌈n/3+1⌉只小鸟即可消灭所有小猪。

如果m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少⌊n/3⌋只小猪。

保证1<=n<=18,0<=m<=2,0<xi,yi<10,输入中的实数均保留到小数点后两位。

上文中,符号⌈c⌉和⌊c⌋分别表示对c向上取整和向下取整

Output

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量

Sample Input

2 2 0 1.00 3.00 3.00 3.00 5 2 1.00 5.00 2.00 8.00 3.00 9.00 4.00 8.00 5.00 5.00

Sample Output

1 1

HINT

 

【样例解释】
这组数据中一共有两个关卡。
第一个关卡与【问题描述】中的情形相同,2只小猪分别位于(1.00,3.00)和 (3.00,3.00),只需发射一只飞行轨迹为y = -x2 + 4x的小鸟即可消灭它们。
第二个关卡中有5只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y = -x2 + 6x上,故Kiana只需要发射一只小鸟即可消灭所有小猪。

【子任务】

呃呃,状压DP只有一个点
a<0否则不行
这是一个非常坑人的东西
我卡了好久
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
struct node
{
    double x,y;
}map[20];
int f[21][21];
int dp[1<<21],T,n,m;
double A(node a,node b)
{
    return (a.y*b.x-b.y*a.x)/((a.x*a.x*b.x)-(b.x*b.x*a.x));
}
double B(double a,node b)
{
    return (b.y-(a*b.x*b.x))/b.x;
}
int same(double x,double y)
{
    if(fabs(x-y)<=0.0000001)return 1;
    return 0;
}
double Y(double a,double b,double x)
{
    return (a*x*x)+(b*x);
}
void init()
{
    memset(f,0,sizeof(f));
    memset(dp,0x3f,sizeof(dp));
    memset(map,0,sizeof(map));
}
int main()
{
    scanf("%d",&T);
    while(T>0)
    {
        T--;
        init();
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
        {
            scanf("%lf%lf",&map[i].x,&map[i].y);
        }
        for(int i=1;i<=n;i++)
        {
            for(int j=i+1;j<=n;j++)
            {
                double a=A(map[i],map[j]);
                double b=B(a,map[i]);
                if(a>=0)continue;
                for(int k=1;k<=n;k++)
                {
                    if(same(Y(a,b,map[k].x),map[k].y)==1)
                    {
                        f[i][j]=f[i][j]|(1<<(k-1));
                    }
                }
            }
        }
        dp[0]=0;
        dp[1]=1;
        for(int S=0;S<=1<<n;++S)
        {
            for(int i=1;i<=n;i++)
            {
                if(!(S&(1<<(i-1))))
                {
                    dp[S|(1<<(i-1))]=min(dp[S|(1<<(i-1))],dp[S]+1);
                    for(int j=i+1;j<=n;j++)
                    {
                        dp[S|f[i][j]]=min(dp[S|f[i][j]],dp[S]+1);
                    }
                }
            }
        }
        printf("%d\n",dp[(1<<n)-1]);
    }
}
View Code

 

转载于:https://www.cnblogs.com/Winniechen/p/6914024.html

一、数据采集层:多源人脸数据获取 该层负责从不同设备 / 渠道采集人脸原始数据,为后续模型训练与识别提供基础样本,核心功能包括: 1. 多设备适配采集 实时摄像头采集: 调用计算机内置摄像头(或外接 USB 摄像头),通过OpenCV的VideoCapture接口实时捕获视频流,支持手动触发 “拍照”(按指定快捷键如Space)或自动定时采集(如每 2 秒采集 1 张),采集时自动框选人脸区域(通过Haar级联分类器初步定位),确保样本聚焦人脸。 支持采集参数配置:可设置采集分辨率(如 640×480、1280×720)、图像格式(JPG/PNG)、单用户采集数量(如默认采集 20 张,确保样本多样性),采集过程中实时显示 “已采集数量 / 目标数量”,避免样本不足。 本地图像 / 视频导入: 支持批量导入本地人脸图像文件(支持 JPG、PNG、BMP 格式),自动过滤非图像文件;导入视频文件(MP4、AVI 格式)时,可按 “固定帧间隔”(如每 10 帧提取 1 张图像)或 “手动选择帧” 提取人脸样本,适用于无实时摄像头场景。 数据集对接: 支持接入公开人脸数据集(如 LFW、ORL),通过预设脚本自动读取数据集目录结构(按 “用户 ID - 样本图像” 分类),快速构建训练样本库,无需手动采集,降低系统开发与测试成本。 2. 采集过程辅助功能 人脸有效性校验:采集时通过OpenCV的Haar级联分类器(或MTCNN轻量级模型)实时检测图像中是否包含人脸,若未检测到人脸(如遮挡、侧脸角度过大),则弹窗提示 “未识别到人脸,请调整姿态”,避免无效样本存入。 样本标签管理:采集时需为每个样本绑定 “用户标签”(如姓名、ID 号),支持手动输入标签或从 Excel 名单批量导入标签(按 “标签 - 采集数量” 对应),采集完成后自动按 “标签 - 序号” 命名文件(如 “张三
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值