[数分提高]2014-2015-2第4教学周第2次课

本文通过证明,展示了绝对连续函数在其定义域内具有一致连续性。利用绝对值函数的性质和介值定理,证明了当绝对连续函数在实数范围内时,该函数也具有一致连续性。

设 $|f|$ 在 $\bbR$ 上一致连续, $f$ 连续. 试证: $f$ 一致连续.

 

证明: 由 $|f|$ 在 $\bbR$ 上一致连续知 $$\bex \forall\ \ve>0,\ \exists\ \delta>0,\st |x-y|<\delta\ra ||f(x)|-|f(y)||<\frac{\ve}{2}. \eex$$ 若 $f(x),f(y)$ 同号, 则 $$\bex |f(x)-f(y)|=||f(x)|-|f(y)||<\frac{\ve}{2}<\ve. \eex$$ 否则, 由连续函数介值定理, $$\bex \exists\ \xi\mbox{ 在 }x,y\mbox{ 之间},\st f(\xi)=0, \eex$$ 如此, $$\beex \bea |f(x)-f(y)|&\leq |f(x)-f(\xi)|+|f(y)-f(\xi)|\\ &=||f(x)|-|f(\xi)||+||f(y)|-|f(\xi)||\\ &<\frac{\ve}{2}+\frac{\ve}{2}=\ve. \eea \eeex$$

转载于:https://www.cnblogs.com/zhangzujin/p/4409344.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值