请给这份NS3的仿真代码加上最详细的注释,使用/**/风格,避免使用//,不改变原始代码
/*
* Copyright (c) 2009 MIRKO BANCHI
*
* SPDX-License-Identifier: GPL-2.0-only
*
* Authors: Mirko Banchi <mk.banchi@gmail.com>
* Sebastien Deronne <sebastien.deronne@gmail.com>
*/
#include "ns3/attribute-container.h"
#include "ns3/boolean.h"
#include "ns3/command-line.h"
#include "ns3/config.h"
#include "ns3/double.h"
#include "ns3/enum.h"
#include "ns3/ht-phy.h"
#include "ns3/internet-stack-helper.h"
#include "ns3/ipv4-address-helper.h"
#include "ns3/ipv4-global-routing-helper.h"
#include "ns3/log.h"
#include "ns3/mobility-helper.h"
#include "ns3/on-off-helper.h"
#include "ns3/packet-sink-helper.h"
#include "ns3/packet-sink.h"
#include "ns3/ssid.h"
#include "ns3/string.h"
#include "ns3/tuple.h"
#include "ns3/udp-client-server-helper.h"
#include "ns3/udp-server.h"
#include "ns3/uinteger.h"
#include "ns3/yans-wifi-channel.h"
#include "ns3/yans-wifi-helper.h"
#include <algorithm>
#include <vector>
// This is a simple example in order to show how to configure an IEEE 802.11n Wi-Fi network.
//
// It outputs the UDP or TCP goodput for every HT MCS value, which depends on the MCS value (0 to
// 7), the channel width (20 or 40 MHz) and the guard interval (long or short). The PHY bitrate is
// constant over all the simulation run. The user can also specify the distance between the access
// point and the station: the larger the distance the smaller the goodput.
//
// The simulation assumes a single station in an infrastructure network:
//
// STA AP
// * *
// | |
// n1 n2
//
// Packets in this simulation belong to BestEffort Access Class (AC_BE).
using namespace ns3;
NS_LOG_COMPONENT_DEFINE("ht-wifi-network");
int
main(int argc, char* argv[])
{
bool udp{true};
bool useRts{false};
Time simulationTime{"10s"};
meter_u distance{1.0};
double frequency{5}; // whether 2.4 or 5 GHz
std::string mcsStr;
std::vector<uint64_t> mcsValues;
int channelWidth{-1}; // in MHz, -1 indicates an unset value
int guardInterval{-1}; // in nanoseconds, -1 indicates an unset value
double minExpectedThroughput{0.0};
double maxExpectedThroughput{0.0};
CommandLine cmd(__FILE__);
cmd.AddValue("frequency",
"Whether working in the 2.4 or 5.0 GHz band (other values gets rejected)",
frequency);
cmd.AddValue("distance",
"Distance in meters between the station and the access point",
distance);
cmd.AddValue("simulationTime", "Simulation time", simulationTime);
cmd.AddValue("udp", "UDP if set to 1, TCP otherwise", udp);
cmd.AddValue("useRts", "Enable/disable RTS/CTS", useRts);
cmd.AddValue(
"mcs",
"list of comma separated MCS values to test; if unset, all MCS values (0-7) are tested",
mcsStr);
cmd.AddValue(
"channelWidth",
"if set, limit testing to a specific channel width expressed in MHz (20 or 40 MHz)",
channelWidth);
cmd.AddValue("guardInterval",
"if set, limit testing to a specific guard interval duration expressed in "
"nanoseconds (800 or 400 ns)",
guardInterval);
cmd.AddValue("minExpectedThroughput",
"if set, simulation fails if the lowest throughput is below this value",
minExpectedThroughput);
cmd.AddValue("maxExpectedThroughput",
"if set, simulation fails if the highest throughput is above this value",
maxExpectedThroughput);
cmd.Parse(argc, argv);
if (useRts)
{
Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold", StringValue("0"));
}
double prevThroughput[8] = {0};
std::cout << "MCS value"
<< "\t\t"
<< "Channel width"
<< "\t\t"
<< "short GI"
<< "\t\t"
<< "Throughput" << '\n';
uint8_t minMcs = 0;
uint8_t maxMcs = 7;
if (mcsStr.empty())
{
for (uint8_t mcs = minMcs; mcs <= maxMcs; ++mcs)
{
mcsValues.push_back(mcs);
}
}
else
{
AttributeContainerValue<UintegerValue, ',', std::vector> attr;
auto checker = DynamicCast<AttributeContainerChecker>(MakeAttributeContainerChecker(attr));
checker->SetItemChecker(MakeUintegerChecker<uint8_t>());
attr.DeserializeFromString(mcsStr, checker);
mcsValues = attr.Get();
std::sort(mcsValues.begin(), mcsValues.end());
}
int minChannelWidth = 20;
int maxChannelWidth = 40;
if ((channelWidth != -1) &&
((channelWidth < minChannelWidth) || (channelWidth > maxChannelWidth)))
{
NS_FATAL_ERROR("Invalid channel width: " << channelWidth << " MHz");
}
if (channelWidth >= minChannelWidth && channelWidth <= maxChannelWidth)
{
minChannelWidth = channelWidth;
maxChannelWidth = channelWidth;
}
int minGi = 400;
int maxGi = 800;
if (guardInterval >= minGi && guardInterval <= maxGi)
{
minGi = guardInterval;
maxGi = guardInterval;
}
for (const auto mcs : mcsValues)
{
uint8_t index = 0;
double previous = 0;
for (int width = minChannelWidth; width <= maxChannelWidth; width *= 2) // MHz
{
for (int gi = maxGi; gi >= minGi; gi /= 2) // Nanoseconds
{
const auto sgi = (gi == 400);
uint32_t payloadSize; // 1500 byte IP packet
if (udp)
{
payloadSize = 1472; // bytes
}
else
{
payloadSize = 1448; // bytes
Config::SetDefault("ns3::TcpSocket::SegmentSize", UintegerValue(payloadSize));
}
NodeContainer wifiStaNode;
wifiStaNode.Create(1);
NodeContainer wifiApNode;
wifiApNode.Create(1);
YansWifiChannelHelper channel = YansWifiChannelHelper::Default();
YansWifiPhyHelper phy;
phy.SetChannel(channel.Create());
WifiMacHelper mac;
WifiHelper wifi;
std::ostringstream ossControlMode;
if (frequency == 5.0)
{
ossControlMode << "OfdmRate";
wifi.SetStandard(WIFI_STANDARD_80211n);
}
else if (frequency == 2.4)
{
wifi.SetStandard(WIFI_STANDARD_80211n);
ossControlMode << "ErpOfdmRate";
Config::SetDefault("ns3::LogDistancePropagationLossModel::ReferenceLoss",
DoubleValue(40.046));
}
else
{
NS_FATAL_ERROR("Wrong frequency value!");
}
auto nonHtRefRateMbps = HtPhy::GetNonHtReferenceRate(mcs) / 1e6;
ossControlMode << nonHtRefRateMbps << "Mbps";
std::ostringstream ossDataMode;
ossDataMode << "HtMcs" << mcs;
wifi.SetRemoteStationManager("ns3::ConstantRateWifiManager",
"DataMode",
StringValue(ossDataMode.str()),
"ControlMode",
StringValue(ossControlMode.str()));
// Set guard interval
wifi.ConfigHtOptions("ShortGuardIntervalSupported", BooleanValue(sgi));
Ssid ssid = Ssid("ns3-80211n");
AttributeContainerValue<
TupleValue<UintegerValue, UintegerValue, EnumValue<WifiPhyBand>, UintegerValue>,
';'>
channelValue;
WifiPhyBand band = (frequency == 5.0 ? WIFI_PHY_BAND_5GHZ : WIFI_PHY_BAND_2_4GHZ);
channelValue.Set(WifiPhy::ChannelSegments{{0, width, band, 0}});
mac.SetType("ns3::StaWifiMac", "Ssid", SsidValue(ssid));
phy.Set("ChannelSettings", channelValue);
NetDeviceContainer staDevice;
staDevice = wifi.Install(phy, mac, wifiStaNode);
mac.SetType("ns3::ApWifiMac",
"EnableBeaconJitter",
BooleanValue(false),
"Ssid",
SsidValue(ssid));
NetDeviceContainer apDevice;
apDevice = wifi.Install(phy, mac, wifiApNode);
int64_t streamNumber = 150;
streamNumber += WifiHelper::AssignStreams(apDevice, streamNumber);
streamNumber += WifiHelper::AssignStreams(staDevice, streamNumber);
// mobility.
MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator>();
positionAlloc->Add(Vector(0.0, 0.0, 0.0));
positionAlloc->Add(Vector(distance, 0.0, 0.0));
mobility.SetPositionAllocator(positionAlloc);
mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");
mobility.Install(wifiApNode);
mobility.Install(wifiStaNode);
/* Internet stack*/
InternetStackHelper stack;
stack.Install(wifiApNode);
stack.Install(wifiStaNode);
streamNumber += stack.AssignStreams(wifiApNode, streamNumber);
streamNumber += stack.AssignStreams(wifiStaNode, streamNumber);
Ipv4AddressHelper address;
address.SetBase("192.168.1.0", "255.255.255.0");
Ipv4InterfaceContainer staNodeInterface;
Ipv4InterfaceContainer apNodeInterface;
staNodeInterface = address.Assign(staDevice);
apNodeInterface = address.Assign(apDevice);
/* Setting applications */
const auto maxLoad = HtPhy::GetDataRate(mcs,
MHz_u{static_cast<double>(width)},
NanoSeconds(sgi ? 400 : 800),
1);
ApplicationContainer serverApp;
if (udp)
{
// UDP flow
uint16_t port = 9;
UdpServerHelper server(port);
serverApp = server.Install(wifiStaNode.Get(0));
streamNumber += server.AssignStreams(wifiStaNode.Get(0), streamNumber);
serverApp.Start(Seconds(0));
serverApp.Stop(simulationTime + Seconds(1));
const auto packetInterval = payloadSize * 8.0 / maxLoad;
UdpClientHelper client(staNodeInterface.GetAddress(0), port);
client.SetAttribute("MaxPackets", UintegerValue(4294967295U));
client.SetAttribute("Interval", TimeValue(Seconds(packetInterval)));
client.SetAttribute("PacketSize", UintegerValue(payloadSize));
ApplicationContainer clientApp = client.Install(wifiApNode.Get(0));
streamNumber += client.AssignStreams(wifiApNode.Get(0), streamNumber);
clientApp.Start(Seconds(1));
clientApp.Stop(simulationTime + Seconds(1));
}
else
{
// TCP flow
uint16_t port = 50000;
Address localAddress(InetSocketAddress(Ipv4Address::GetAny(), port));
PacketSinkHelper packetSinkHelper("ns3::TcpSocketFactory", localAddress);
serverApp = packetSinkHelper.Install(wifiStaNode.Get(0));
streamNumber +=
packetSinkHelper.AssignStreams(wifiStaNode.Get(0), streamNumber);
serverApp.Start(Seconds(0));
serverApp.Stop(simulationTime + Seconds(1));
OnOffHelper onoff("ns3::TcpSocketFactory", Ipv4Address::GetAny());
onoff.SetAttribute("OnTime",
StringValue("ns3::ConstantRandomVariable[Constant=1]"));
onoff.SetAttribute("OffTime",
StringValue("ns3::ConstantRandomVariable[Constant=0]"));
onoff.SetAttribute("PacketSize", UintegerValue(payloadSize));
onoff.SetAttribute("DataRate", DataRateValue(maxLoad));
AddressValue remoteAddress(
InetSocketAddress(staNodeInterface.GetAddress(0), port));
onoff.SetAttribute("Remote", remoteAddress);
ApplicationContainer clientApp = onoff.Install(wifiApNode.Get(0));
streamNumber += onoff.AssignStreams(wifiApNode.Get(0), streamNumber);
clientApp.Start(Seconds(1));
clientApp.Stop(simulationTime + Seconds(1));
}
Ipv4GlobalRoutingHelper::PopulateRoutingTables();
Simulator::Stop(simulationTime + Seconds(1));
Simulator::Run();
auto rxBytes = 0.0;
if (udp)
{
rxBytes = payloadSize * DynamicCast<UdpServer>(serverApp.Get(0))->GetReceived();
}
else
{
rxBytes = DynamicCast<PacketSink>(serverApp.Get(0))->GetTotalRx();
}
auto throughput = (rxBytes * 8) / simulationTime.GetMicroSeconds(); // Mbit/s
Simulator::Destroy();
std::cout << mcs << "\t\t\t" << width << " MHz\t\t\t" << std::boolalpha << sgi
<< "\t\t\t" << throughput << " Mbit/s" << std::endl;
// test first element
if (mcs == minMcs && width == 20 && !sgi)
{
if (throughput < minExpectedThroughput)
{
NS_FATAL_ERROR("Obtained throughput " << throughput << " is not expected!");
}
}
// test last element
if (mcs == maxMcs && width == 40 && sgi)
{
if (maxExpectedThroughput > 0 && throughput > maxExpectedThroughput)
{
NS_FATAL_ERROR("Obtained throughput " << throughput << " is not expected!");
}
}
// test previous throughput is smaller (for the same mcs)
if (throughput > previous)
{
previous = throughput;
}
else
{
NS_FATAL_ERROR("Obtained throughput " << throughput << " is not expected!");
}
// test previous throughput is smaller (for the same channel width and GI)
if (throughput > prevThroughput[index])
{
prevThroughput[index] = throughput;
}
else
{
NS_FATAL_ERROR("Obtained throughput " << throughput << " is not expected!");
}
index++;
}
}
}
return 0;
}
最新发布