ZOJ 3946 Highway Project(Dijkstra)

本文介绍了一个高速公路项目的算法解决方案,目标是最小化从首都到其他城市的总旅行时间和建设成本。使用Dijkstra算法结合优先队列实现图的邻接表表示,通过多次测试案例验证了算法的有效性和正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Highway Project

Time Limit: 2 Seconds      Memory Limit: 65536 KB

Edward, the emperor of the Marjar Empire, wants to build some bidirectional highways so that he can reach other cities from the capital as fast as possible. Thus, he proposed the highway project.

The Marjar Empire has N cities (including the capital), indexed from 0 to N - 1 (the capital is 0) and there are M highways can be built. Building the i-th highway costs Ci dollars. It takes Di minutes to travel between cityXi and Yi on the i-th highway.

Edward wants to find a construction plan with minimal total time needed to reach other cities from the capital, i.e. the sum of minimal time needed to travel from the capital to city i (1 ≤ i ≤ N). Among all feasible plans, Edward wants to select the plan with minimal cost. Please help him to finish this task.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first contains two integers NM (1 ≤ NM ≤ 105).

Then followed by M lines, each line contains four integers XiYiDiCi (0 ≤ XiYi < N, 0 < DiCi < 105).

Output

For each test case, output two integers indicating the minimal total time and the minimal cost for the highway project when the total time is minimized.

Sample Input
2
4 5
0 3 1 1
0 1 1 1
0 2 10 10
2 1 1 1
2 3 1 2
4 5
0 3 1 1
0 1 1 1
0 2 10 10
2 1 2 1
2 3 1 2
Sample Output
4 3

4 4

Dijkstra 用优先队列 ,用邻接表建立图,注意要long long int。比赛最后一分钟发现数组没有long long int. 还有在更新s数组的

要加等号,

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <string>
#include <stdio.h>
#include <queue>

using namespace std;
const long long int INF=1000000000000000;
#define MAX 100000
struct Node
{
    int value;
    int next;
    long long int time;
    long long int cost;
}edge[MAX*2+5];
struct Node2
{
    int time;
    int cost;
    int value;
    Node2(){};
    Node2(int time,int cost,int value)
    {
        this->time=time;
        this->cost=cost;
        this->value=value;
    }
    friend bool operator<(Node2 a,Node2 b)
    {
        if(a.time==b.time)
            return a.cost>b.cost;
        return a.time>b.time;
    }
};
int cot;
int head[MAX+5];
int vis[MAX+5];
long long int s[MAX+5];
long long int ans1;
long long int ans2;
int n,m;
void add(int x,int y,long long int time,long long int cost)
{
    edge[cot].value=y;
    edge[cot].next=head[x];
    edge[cot].time=time;
    edge[cot].cost=cost;
    head[x]=cot++;
}
void Dijkstra()
{
    priority_queue<Node2> q;
    memset(vis,0,sizeof(vis));
    for(int i=0;i<n;i++)
        s[i]=INF;
    s[0]=0;
    q.push(Node2(0,0,0));
    while(!q.empty())
    {
        Node2 term=q.top();
        q.pop();
        if(vis[term.value]) continue;
        vis[term.value]=1;
        ans2+=term.cost;
        int a=head[term.value];
        while(a!=-1)
        {
            if(s[edge[a].value]>=s[term.value]+edge[a].time)
            {
                s[edge[a].value]=s[term.value]+edge[a].time;
                q.push(Node2(s[edge[a].value],edge[a].cost,edge[a].value));
            }
            a=edge[a].next;
        }
    }
}
int main()
{
    int t;
    scanf("%d",&t);
    int x,y;
    long long int xx,yy;
    while(t--)
    {
        scanf("%d%d",&n,&m);
        memset(head,-1,sizeof(head));
        cot=0;
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d%lld%lld",&x,&y,&xx,&yy);
            add(x,y,xx,yy);
            add(y,x,xx,yy);
        }
        ans1=0;ans2=0;
        Dijkstra();
        for(int i=1;i<n;i++)
            ans1+=s[i];
        printf("%lld %lld\n",ans1,ans2);

    }
    return 0;
}


转载于:https://www.cnblogs.com/dacc123/p/8228684.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值