你想做的是:
from keras.models import Sequential
from keras.layers import LSTM, Dense
from keras.optimizers import SGD
import numpy as np
data_dim = 1 # EACH TIMESTAMP IS SCALAR SO SHAPE=1
timesteps = 6 # EACH EXAMPLE CONTAINS 6 TIMESTAMPS
num_classes = 1 # EACH LABEL IS ONE NUMBER SO SHAPE=1
batch_size = 1 # TAKE SIZE THAT CAN DIVIDE THE NUMBER OF EXAMPLES IN THE TRAIN DATA. THE HIGHER THE BATCH SIZE THE BETTER!
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model = Sequential()
model.add(LSTM(32, return_sequences=True, stateful=True,batch_input_shape=
(batch_size, timesteps, data_dim)))
model.add(LSTM(32, return_sequences=True, stateful=True))
model.add(LSTM(32, stateful=True))
model.add(Dense(1, activation='softmax')) # AT THE END YOU WANT ONE VALUE (LIKE THE LABELS) -> SO DENSE SHOULD OUTPUT 1 NODE
model.compile(l

本文介绍了如何使用Keras库在Java环境中构建一个LSTM分类器模型。模型包含三个LSTM层,并使用SGD优化器进行训练。数据集需要被重塑为适合模型输入的形状。最后,模型通过sparse_categorical_crossentropy损失函数进行编译,并在训练数据上进行拟合。
最低0.47元/天 解锁文章
1509

被折叠的 条评论
为什么被折叠?



