hdu-4810 Wall Painting(组合数学)

本文针对WallPainting问题,提供了一种通过计算不同颜色组合下的异或和来预测绘画颜色的方法。采用按位计算策略,统计每一种颜色的出现次数,并结合组合数学计算所有可能的颜色组合,最终给出从第一天到最后一天的累计颜色总和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:

Wall Painting

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2681    Accepted Submission(s): 857


Problem Description
Ms.Fang loves painting very much. She paints GFW(Great Funny Wall) every day. Every day before painting, she produces a wonderful color of pigments by mixing water and some bags of pigments. On the K-th day, she will select K specific bags of pigments and mix them to get a color of pigments which she will use that day. When she mixes a bag of pigments with color A and a bag of pigments with color B, she will get pigments with color A xor B.
When she mixes two bags of pigments with the same color, she will get color zero for some strange reasons. Now, her husband Mr.Fang has no idea about which K bags of pigments Ms.Fang will select on the K-th day. He wonders the sum of the colors Ms.Fang will get with  different plans.

For example, assume n = 3, K = 2 and three bags of pigments with color 2, 1, 2. She can get color 3, 3, 0 with 3 different plans. In this instance, the answer Mr.Fang wants to get on the second day is 3 + 3 + 0 = 6.
Mr.Fang is so busy that he doesn’t want to spend too much time on it. Can you help him?
You should tell Mr.Fang the answer from the first day to the n-th day.
 

 

Input
There are several test cases, please process till EOF.
For each test case, the first line contains a single integer N(1 <= N <= 10 3).The second line contains N integers. The i-th integer represents the color of the pigments in the i-th bag.
 

 

Output
For each test case, output N integers in a line representing the answers(mod 10 6 +3) from the first day to the n-th day.
 

 

Sample Input
4
1 2 10 1
 

 

Sample Output
14 36 30 8
 
题意:
 
取k个数的异或和是多少,k从1到n;
 
思路:
 
按位计算对ans[k]的贡献,计数第i为上有多少个1和多少个0,然后算取法就好了;
 
AC代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int maxn=1e3+10;
const LL mod=1e6+3;
LL ans[maxn],c[maxn][maxn];
int n,a[maxn];
inline void Init()
{
    memset(c,0,sizeof(c));
    c[0][0]=1;
    for(int i=1;i<=maxn-2;i++)
    {
        c[i][0]=c[i][i]=1;
        for(int j=1;j<i;j++)
            c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
    }
}
int main()
{
    Init();
    while(scanf("%d",&n)!=EOF)
    {
        for(int i=1;i<=n;i++)scanf("%d",&a[i]),ans[i]=0;
        LL p=1;
        for(int i=0;i<=31;i++)
        {
            int x=0,y=0;
            for(int j=1;j<=n;j++)
            {
                if((a[j]>>i)&1)x++;
                else y++;
            }
            for(int j=1;j<=n;j++)
            {
                for(int k=1;k<=j;k+=2)
                {
                    ans[j]=(ans[j]+c[x][k]*c[y][j-k]%mod*p)%mod;
                }
            }
            p=2*p%mod;
        }
        for(int i=1;i<n;i++)printf("%lld ",ans[i]);
        printf("%lld\n",ans[n]);
    }
    return 0;
}

  

 

转载于:https://www.cnblogs.com/zhangchengc919/p/5926638.html

内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值