hdu 3018 Ant Trip

本文探讨了AntTrip旅行问题,即如何将蚂蚁分为最少的组数以确保每条路径仅被经过一次。通过使用并查集算法判断连通性和欧拉回路原理,解决了这一难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ant Trip

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2014    Accepted Submission(s): 785


Problem Description
Ant Country consist of N towns.There are M roads connecting the towns.

Ant Tony,together with his friends,wants to go through every part of the country. 

They intend to visit every road , and every road must be visited for exact one time.However,it may be a mission impossible for only one group of people.So they are trying to divide all the people into several groups,and each may start at different town.Now tony wants to know what is the least groups of ants that needs to form to achieve their goal.
 

 

Input
Input contains multiple cases.Test cases are separated by several blank lines. Each test case starts with two integer N(1<=N<=100000),M(0<=M<=200000),indicating that there are N towns and M roads in Ant Country.Followed by M lines,each line contains two integers a,b,(1<=a,b<=N) indicating that there is a road connecting town a and town b.No two roads will be the same,and there is no road connecting the same town.
 

 

Output
For each test case ,output the least groups that needs to form to achieve their goal.
 

 

Sample Input
3 3
1 2
2 3
1 3
 
 
4 2
1 2
3 4
 

 

Sample Output
1
2
 
Hint
New ~~~ Notice: if there are no road connecting one town ,tony may forget about the town. In sample 1,tony and his friends just form one group,they can start at either town 1,2,or 3. In sample 2,tony and his friends must form two group.
 

 

Source
 
解题:欧拉回路的判定
 
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int maxn = 100010;
 4 int uf[maxn],d[maxn],odd[maxn];
 5 bool vis[maxn];
 6 int Find(int x){
 7     if(x != uf[x]) uf[x] = Find(uf[x]);
 8     return uf[x];
 9 }
10 vector<int>root;
11 int main(){
12     int n,m,u,v;
13     while(~scanf("%d%d",&n,&m)){
14         for(int i = 0; i < maxn; ++i){
15             uf[i] = i;
16             odd[i] = d[i] = 0;
17             vis[i] = false;
18         }
19         root.clear();
20         for(int i = 0; i < m; ++i){
21             scanf("%d%d",&u,&v);
22             ++d[u];
23             ++d[v];
24             u = Find(u);
25             v = Find(v);
26             if(u != v) uf[v] = u;
27         }
28         for(int i = 1; i <= n; ++i){
29             u = Find(i);
30             if(!vis[u]){
31                 vis[u] = true;
32                 root.push_back(u);
33             }
34             if(d[i]&1) ++odd[u];
35         }
36         int ret = 0;
37         for(int i = 0; i < root.size(); ++i){
38             if(!d[root[i]]) continue;
39             if(odd[root[i]] == 0) ret++;
40             else ret += odd[root[i]]/2;
41         }
42         printf("%d\n",ret);
43     }
44     return 0;
45 }
View Code

 

转载于:https://www.cnblogs.com/crackpotisback/p/4716248.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值