四川大学2003年数学分析考研试题

本文包含了一系列关于数学极限和积分的证明题,包括数列极限、函数极限、单调递减函数积分收敛性的证明等内容,适合高等数学课程的学习与复习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、(每小题10分,共20分)设$\displaystyle \lim\limits_{n\to \infty}x_{n}=a$设$\displaystyle y_{n}=\frac{x_{1}+2x_{2}+\cdot\cdot\cdot+nx_{n}}{n(n+1)}$.证明:

1.设$a$是有限数,则$\displaystyle \lim\limits_{n\to \infty}y_{n}=\frac{a}{2}$.

2.若$a=+\infty $,则$\displaystyle \lim\limits_{n\to \infty}y_{n}=+\infty$.

 

二、(每小题10分,共20分)设$f(x)$在$[0,+\infty)$上单调递减且$\displaystyle \int_{0}^{+\infty}f(x)dx$收敛.

1.证明:$\displaystyle \lim\limits_{x\to +\infty}xf(x)=0$

2.若$x\to +\infty$时$\displaystyle f(x)\to 0$且$f'(x)$连续,证明:$\displaystyle \int_{0}^{+\infty}xf'(x)dx$也收敛.

 

三、(每小题10分,共20分)

1.若对每个正整数$\displaystyle n,u_{n}(x)$是$(0,1)$内的单调递减的函数,且$\displaystyle \lim\limits_{x\to 1-0}u_{n}(x)=1$,证明:

若$\displaystyle \sum\limits_{n=1}^{\infty}a_{n}$收敛则$\displaystyle \lim\limits_{x\to 1-0} \sum\limits_{n=1}^{\infty}a_{n}u_{n}(x)=\sum\limits_{n=1}^{\infty} a_{n}$

2.证明:$ \displaystyle  \lim\limits_{x\to 1-0}\sum\limits_{n=1}^{\infty}\frac{(-1)^{n-1}x^{n}}{n(1+x^{n})}=\frac{1}{2}\ln 2$

 

四、(本题满分15分)设$y=f(x)$在$\displaystyle [-\sqrt{a^{2}+b^{2}+c^{2}},\sqrt{a^{2}+b^{2}+c^{2}} ]$上连续,

证明:$ \displaystyle \iint\limits_{S} f(ax+by+cz)dS=2\pi \int_{-1}^{1}f(u\sqrt{a^{2}+b^{2}+c^{2}})du$.其中$S$是单位球面:$\displaystyle x^{2}+y^{2}+z^{2}=1$.

 

转载于:https://www.cnblogs.com/xxldannyboy/p/5586190.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值