New Year and Domino 二维前缀和

本文介绍了一个关于放置多米诺骨牌的算法问题,包括输入输出格式、问题描述及解决方案。通过预处理空闲网格,快速计算指定矩形区域内放置多米诺骨牌的不同方式数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C. New Year and Domino
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

They say "years are like dominoes, tumbling one after the other". But would a year fit into a grid? I don't think so.

Limak is a little polar bear who loves to play. He has recently got a rectangular grid with h rows and w columns. Each cell is a square, either empty (denoted by '.') or forbidden (denoted by '#'). Rows are numbered 1 through h from top to bottom. Columns are numbered 1through w from left to right.

Also, Limak has a single domino. He wants to put it somewhere in a grid. A domino will occupy exactly two adjacent cells, located either in one row or in one column. Both adjacent cells must be empty and must be inside a grid.

Limak needs more fun and thus he is going to consider some queries. In each query he chooses some rectangle and wonders, how many way are there to put a single domino inside of the chosen rectangle?

Input

The first line of the input contains two integers h and w (1 ≤ h, w ≤ 500) – the number of rows and the number of columns, respectively.

The next h lines describe a grid. Each line contains a string of the length w. Each character is either '.' or '#' — denoting an empty or forbidden cell, respectively.

The next line contains a single integer q (1 ≤ q ≤ 100 000) — the number of queries.

Each of the next q lines contains four integers r1ic1ir2ic2i (1 ≤ r1i ≤ r2i ≤ h, 1 ≤ c1i ≤ c2i ≤ w) — the i-th query. Numbers r1i and c1i denote the row and the column (respectively) of the upper left cell of the rectangle. Numbers r2i and c2i denote the row and the column (respectively) of the bottom right cell of the rectangle.

Output

Print q integers, i-th should be equal to the number of ways to put a single domino inside the i-th rectangle.

Examples
input
Copy
5 8
....#..#
.#......
##.#....
##..#.##
........
4
1 1 2 3
4 1 4 1
1 2 4 5
2 5 5 8
output
Copy
4
0
10
15
input
Copy
7 39
.......................................
.###..###..#..###.....###..###..#..###.
...#..#.#..#..#.........#..#.#..#..#...
.###..#.#..#..###.....###..#.#..#..###.
.#....#.#..#....#.....#....#.#..#..#.#.
.###..###..#..###.....###..###..#..###.
.......................................
6
1 1 3 20
2 10 6 30
2 10 7 30
2 2 7 7
1 7 7 7
1 8 7 8
output
Copy
53
89
120
23
0
2
Note

A red frame below corresponds to the first query of the first sample. A domino can be placed in 4 possible ways

 

  自闭 自闭 

 

 1 #include <cstdio>
 2 #include <cstring>
 3 #include <queue>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <set>
 7 #include <iostream>
 8 #include <map>
 9 #include <stack>
10 #include <string>
11 #include <vector>
12 #define  pi acos(-1.0)
13 #define  eps 1e-6
14 #define  fi first
15 #define  se second
16 #define  lson l,m,rt<<1
17 #define  rson m+1,r,rt<<1|1
18 #define  bug         printf("******\n")
19 #define  mem(a,b)    memset(a,b,sizeof(a))
20 #define  fuck(x)     cout<<"["<<x<<"]"<<endl
21 #define  f(a)        a*a
22 #define  sf(n)       scanf("%d", &n)
23 #define  sff(a,b)    scanf("%d %d", &a, &b)
24 #define  sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
25 #define  sffff(a,b,c,d) scanf("%d %d %d %d", &a, &b, &c, &d)
26 #define  pf          printf
27 #define  FRE(i,a,b)  for(i = a; i <= b; i++)
28 #define  FREE(i,a,b) for(i = a; i >= b; i--)
29 #define  FRL(i,a,b)  for(i = a; i < b; i++)
30 #define  FRLL(i,a,b) for(i = a; i > b; i--)
31 #define  FIN         freopen("DATA.txt","r",stdin)
32 #define  gcd(a,b)    __gcd(a,b)
33 #define  lowbit(x)   x&-x
34 #pragma  comment (linker,"/STACK:102400000,102400000")
35 using namespace std;
36 typedef long long LL;
37 typedef unsigned long long ULL;
38 const int maxn = 2e5 + 10;
39 int n, m, sum[505][505], y[505][505], x[505][505];
40 char mp[505][505];
41 int main() {
42     sff(n, m);
43     for (int i = 1 ; i <= n ; i++)
44         scanf("%s", mp[i] + 1);
45     for (int i = 1 ; i <= n ; i++) {
46         for (int j = 1 ; j <= m ; j++) {
47             if (mp[i][j] == '.' && mp[i + 1][j] == '.' ) {
48                 sum[i][j]++;
49                 y[i][j] = 1;
50             }
51             if (mp[i][j] == '.' && mp[i][j + 1] == '.' ) {
52                 sum[i][j]++;
53                 x[i][j] = 1;
54             }
55             sum[i][j] += sum[i - 1][j] + sum[i][j - 1] - sum[i - 1][j - 1];
56         }
57     }
58     int q;
59     sf(q);
60     while(q--) {
61         int x1, y1, x2, y2;
62         sffff(x1, y1, x2, y2);
63         int ans = sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1];
64         for (int i = x1 ; i <= x2 ; i++) ans -= x[i][y2];
65         for (int i = y1 ; i <= y2 ; i++) ans -= y[x2][i];
66         printf("%d\n", ans);
67     }
68     return  0;
69 }

 

 

 

转载于:https://www.cnblogs.com/qldabiaoge/p/9452027.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值