Introduction to Mathematical Thinking - Week 4

本文探讨了逻辑符号的正确理解和运用,特别是在否定逻辑中的常见误区。通过实例对比正确的逻辑表达与错误的符号拆分,强调了理解逻辑结构的重要性。同时,文章还提供了几个练习题及其解析。

否定的逻辑

应该思考符号背后表示的逻辑,而不是像操作算术运算符一样操作逻辑符号。

比如

对于任意的 x,x属于自然数,那么 x 是偶数或者奇数;这是对的

如果使用“乘法分配律”拆分,变成“对于任意的x,x属于自然数,那么x是奇数或者对于任意的x,x属于自然数,那么x是奇数” 这是错的

 

疑惑

但是做练习的时候,还是把其当做符号来运算。For all 变成 at least one;At least one 变成 for all;v 变成  ^;

计算机也是把逻辑规则抽象成符号来运算的。

 

注意言论的范围

如果你要讨论的是动物,那么应该以动物为主体,而不是以动物的子集为主体。

比如,应该是“对于任意的动物,如果它是老虎,那么它是猫科动物”,而不是“对于任意的老虎,它是猫科动物”。

 

习题

1. 

Which of the following is equivalent to ¬∀x[P(x)⇒(Q(x)∨R(x))]? (Only one is.) [5 points]

∃x[P(x)∨¬Q(x)∨¬R(x)]

∃x[¬P(x)∧Q(x)∧R(x)]

∃x[P(x)∧¬Q(x)∧¬R(x)]

∃x[P(x)∧(¬Q(x)∨¬R(x))]

∃x[P(x)∨(¬Q(x)∧¬R(x))]

 

解:¬的范围是 ∀x 还是 ∀x[P(x)⇒(Q(x)∨R(x))]?

如果不考虑¬,答案是 ∃x[P(x)∧¬Q(x)∧¬R(x)]。然后答案是这个。这让我疑惑¬是不是印刷错误。

 

打分题

 

 总评给了0分,正确性给了3分,其他满分。理由是division's not an operation in the integers

改写后的结果:

 

that means that 1 is divisible by P. But, that's a contradiction, P is a prime  number. So, it's at least equal to 2.  So, it can't divide into 1. 

 

转载于:https://www.cnblogs.com/jay54520/p/6893654.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值