TensorFlow 生成 .ckpt 和 .pb

TensorFlow模型保存与加载
本文详细解析了TensorFlow中模型保存与加载的各种方式,包括.ckpt文件与.pb文件的区别及用途,介绍了如何使用这些文件在不同程序间迁移模型。

1. TensorFlow  生成的  .ckpt 和  .pb 都有什么用?


The .ckpt is the model given by tensorflow which includes all the weights/parameters in the model. The .pb file stores the computational graph. To make tensorflow work we need both the graph and the parameters. There are two ways to get the graph: (1) use the python program that builds it in the first place (tensorflowNetworkFunctions.py). (2) Use a .pb file (which would have to be generated by tensorflowNetworkFunctions.py). .ckpt file is were all the intelligence is.

 

2. TensorFlow saving into/loading a graph from a file

       

       正好看到 StackOverflow 上有位仁兄问过相关的问题,整理的不错

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

        From what I've gathered so far, there are several different ways of dumping a TensorFlow graph
into a file and then loading it into another program, but I haven't been able to find clear examples/information on how they work. What I already know is this:

  1. Save the model's variables into a checkpoint file (.ckpt) using a tf.train.Saver() and restore them later (source)
  2. Save a model into a .pb file and load it back in using tf.import_graph_def() (source)
  3. Load in a model from a .pb file, retrain it, and dump it into a new .pb file using Bazel (source)
  4. Freeze the graph to save the graph and weights together (source)
  5. Use as_graph_def() to save the model, and for weights/variables, map them into constants (source)

However, I haven't been able to clear up several questions regarding these different methods:

  1. Regarding checkpoint files, do they only save the trained weights of a model? Could checkpoint files be loaded into a new program, and be used to run the model, or do they simply serve as ways to save the weights in a model at a certain time/stage?
  2. Regarding Regarding Bazel, can it only save into/load from .pb files for retraining? Is there a simple Bazel command just to dump a graph into a .pb?
  3. Regarding freezing, can a frozen graph be loaded in using The Android demo for TensorFlow loads in Google's Inception model from a .pb file. If I wanted to substitute my own .pb file, how would I go about doing that? Would I need to change any native code/methods?
  4. In general, what exactly is the difference between all these methods? Or more broadly, what is the difference between  In short, what I'm looking for is a method to save both a graph (as in, the various operations and such) and its weights/variables into a file, which can then be used to load the graph and weights into another program, for use (not necessarily continuing/retraining).

     

    Documentation about this topic isn't very straightforward, so any answers/information would be greatly appreciated.

1 Answer

up vote
down voteaccepted

There are many ways to approach the problem of saving a model in TensorFlow, which can make it a bit confusing. The documentation on this topic is taking shape, but doesn't cover all of the details in your question. Taking each of your sub-questions in turn:

  1. The checkpoint files (produced e.g. by calling saver.save() on a tf.train.Saver object) contain only the weights, and any other variables defined in the same program. To use them in another program, you must re-create the associated graph structure (e.g. by running code to build it again, or calling saver.save() also produces a file containing a the tutorial for more details.

  2. tf.train.write_graph() only writes the graph structure; not the weights.

  3. Bazel is unrelated to reading or writing TensorFlow graphs. (Perhaps I misunderstand your question: feel free to clarify it in a comment.)

  4. A frozen graph can be loaded using 

    The main change would be to update the names of the tensor(s) that are fed into the model, and the names of the tensor(s) that are fetched from the model. In the TensorFlow Android demo, this would correspond to the outputName strings that are passed to 

    The GraphDef is the program structure, which typically does not change through the training process. The checkpoint is a snapshot of the state of a training process, which typically changes at every step of the training process. As a result, TensorFlow uses different storage formats for these types of data, and the low-level API provides different ways to save and load them. Higher-level libraries, such as the Keras, and skflow build on these mechanisms to provide more convenient ways to save and restore an entire model.

share improve this answer
 
  
Does this mean that the C++ API documentation lies, when it says that you can load the graph saved withtf.train.write_graph() and then execute it? – mnicky yesterday 
  
The C++ API documentation does not lie, but it is missing a few details. The most important detail is that, in addition to the GraphDef saved by mrry yesterday

转载于:https://www.cnblogs.com/nowornever-L/p/6991295.html

<think>我们已知用户意图是了解Python中如何处理.ckpt文件(TensorFlow的检查点文件)。根据引用,.ckpt文件是TensorFlow中用于保存模型权重的二进制文件。在TensorFlow0.11之后,检查点通常由多个文件组成(例如.data文件、.index文件.meta文件)。我们将介绍如何加载保存.ckpt文件,以及如何转换.ckpt文件到其他格式(如PyTorch的.bin文件)等。步骤1:加载TensorFlow.ckpt文件在TensorFlow中,我们可以使用`tf.train.Checkpoint`或`tf.train.Saver`来保存加载检查点。示例:保存加载模型```pythonimport tensorflow astf#定义模型model= tf.keras.Sequential([tf.keras.layers.Dense(10, activation='relu',input_shape=(4,)),tf.keras.layers.Dense(3) ])model.compile(optimizer='adam',loss='mse') #训练模型(示例数据)importnumpy asnpdata= np.random.random((1000,4)) labels= np.random.random((1000,3)) model.fit(data, labels, epochs=10) #保存为ckpt格式checkpoint_path ="model.ckpt"model.save_weights(checkpoint_path)#这会生成多个文件:model.ckpt.data-00000-of-00001,model.ckpt.index等#加载模型权重new_model =tf.keras.Sequential([tf.keras.layers.Dense(10,activation='relu', input_shape=(4,)),tf.keras.layers.Dense(3)]) new_model.compile(optimizer='adam',loss='mse') new_model.load_weights(checkpoint_path)```步骤2:转换.ckpt文件到PyTorch模型(参考引用[3])有时我们需要将TensorFlow的检查点转换为PyTorch模型。可以使用Hugging Face提供的转换脚本(如转换BERT模型)。示例命令(在命令行中运行): ```bashpython convert_bert_original_tf_checkpoint_to_pytorch.py \--tf_checkpoint_pathpath/to/bert_model.ckpt\--bert_config_filepath/to/bert_config.json\--pytorch_dump_path path/to/pytorch_model.bin```注意:这里的`tf_checkpoint_path`应该是检查点的前缀(例如,如果文件是`model.ckpt.index`,则路径为`model.ckpt`),而不带`.index`或`.data`后缀。步骤3:.ckpt文件与其他格式的转换(参考引用[4])在PyTorch中,通常使用`.pth`或`.bin`文件保存模型权重。而`.ckpt`是TensorFlow的格式。我们可以通过以下方式在PyTorch中保存加载模型,与TensorFlow.ckpt无关,但有时需要转换。如果已经有一个TensorFlow.ckpt文件,并想在PyTorch中使用,则需要转换(如上一步)。如果只是想在PyTorch中保存加载模型,则使用:```python#保存PyTorch模型torch.save(model.state_dict(),'model.pth') #加载model=MyModel()model.load_state_dict(torch.load('model.pth'))```步骤4:关于.safetensors文件(参考引用[4]) .safetensors是一种安全且高效的文件格式,用于存储张量。它由HuggingFace推广,旨在替代传统的PyTorch二进制文件(.bin或.pth)。加载.safetensors文件可以使用`safetensors`库。示例:```pythonfromsafetensors importsafe_open#加载.safetensors文件withsafe_open('model.safetensors', framework='pt') asf:tensors ={}for keyin f.keys():tensors[key] =f.get_tensor(key)```总结:1.TensorFlow中,使用`model.save_weights`保存为.ckpt格式,使用`model.load_weights`加载。2.转换.ckpt到PyTorch格式可以使用专门的转换脚本(如HuggingFace提供的)。3. PyTorch模型通常使用`.pth`或`.bin`保存,也可以使用`.safetensors`。注意:在转换过程中,要确保模型结构在TensorFlowPyTorch中是一致的,否则转换后的权重可能无法正确加载。相关问题:1.如何将TensorFlow.ckpt文件转换为PyTorch模型?2..ckpt文件与.pth文件有什么区别?3.TensorFlow中,如何从.ckpt文件恢复训练?4.如何将多个.ckpt文件合并为一个模型?5.如何查看.ckpt文件中保存了哪些变量?</think>### Python中处理.ckpt文件指南 `.ckpt`文件是TensorFlow训练模型的检查点文件(Checkpoint),用于保存模型权重、优化器状态等变量。以下是关键操作方法: --- #### **1. 加载.ckpt文件** **场景**:恢复训练或使用预训练模型 ```python import tensorflow as tf # 定义模型结构(需与保存时一致) model = tf.keras.Sequential([...]) # 从.ckpt加载权重 checkpoint_path = "model.ckpt" model.load_weights(checkpoint_path) # 自动识别.data/.index文件 ``` #### **2. 保存.ckpt文件** **场景**:训练中定期保存模型 ```python # 创建回调函数 checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath="model.ckpt", # 生成 model.ckpt.data-00000-of-00001, .index 等 save_weights_only=True, # 仅保存权重 save_freq="epoch" # 每轮保存 ) # 训练时加入回调 model.fit(train_data, callbacks=[checkpoint_callback]) ``` #### **3. 转换.ckpt到其他格式** **场景**:模型部署或跨框架使用 - **转换为PyTorch模型**(需结构匹配): ```bash python convert_tf_to_pytorch.py \ --tf_checkpoint_path model.ckpt \ --pytorch_dump_path pytorch_model.bin # 输出PyTorch权重[^3] ``` - **转换为.pb(Protocol Buffer)**: ```python # 需先构建计算图 tf.saved_model.save(model, "pb_model_directory") ``` #### **4. 直接读取变量内容** **场景**:调试或提取权重 ```python # 通过tf.train.Checkpoint读取 chkpt = tf.train.Checkpoint(model=model) chkpt.restore("model.ckpt") # 查看所有变量名 print([var.name for var in tf.train.list_variables("model.ckpt")]) ``` --- ### **关键注意事项** 1. **文件组成**: - TensorFlow 0.11+的.ckpt由多个文件组成(需保留同目录下的`.index`、`.data-*`、`.meta`)[^1]。 2. **跨框架转换**: - 转换到PyTorch需确保网络结构一致,并借助转换脚本[^3]。 3. **与.pth/.bin区别**: - `.ckpt`是TensorFlow特有格式,`.pth`是PyTorch权重文件,`.bin`是通用二进制格式(如Hugging Face模型)[^4]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值