FFT NTT 模板

本文深入探讨了NTT(数论变换)和FFT(快速傅立叶变换)两种算法,详细介绍了这两种算法的实现过程,包括算法的核心计算步骤、复数运算以及多项式乘法的高效处理方式。通过具体的代码示例,展示了如何使用NTT和FFT进行多项式的快速相乘,并解释了在不同场景下选择NTT或FFT的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

NTT:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 2000050
#define ll long long
#define MOD 998244353
template<typename T>
inline void read(T&x)
{
    T f=1,c=0;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){c=10*c+ch-'0';ch=getchar();}
    x = f*c;
}
ll fastpow(ll x,int y)
{
    ll ret = 1;
    while(y)
    {
        if(y&1)ret=ret*x%MOD;
        x=x*x%MOD;
        y>>=1;
    }
    return ret;
}
int n,m,mx,to[2*N],lim=1,l;
void ntt(ll *a,int len,int k)
{
    for(int i=0;i<len;i++)
        if(i<to[i])swap(a[i],a[to[i]]);
    for(int i=1;i<len;i<<=1)
    {
        ll w0 = fastpow(3,(MOD-1)/(i<<1));
        for(int j=0;j<len;j+=(i<<1))
        {
            ll w = 1;
            for(int o=0;o<i;o++,w=w*w0%MOD)
            {
                ll w1 = a[j+o],w2 = a[j+o+i]*w%MOD;
                a[j+o] = (w1+w2)%MOD;
                a[j+o+i] = ((w1-w2)%MOD+MOD)%MOD;
            }
        }
    }
    if(k==-1)
        for(int i=1;i<(lim>>1);i++)swap(c[i],c[lim-i]);
}
ll a[2*N],b[2*N],c[2*N];
int main()
{
    read(n),read(m);mx = max(n,m);
    for(int i=0;i<=n;i++)read(a[i]);
    for(int i=0;i<=m;i++)read(b[i]);
    while(lim<=2*mx)lim<<=1,l++;
    for(int i=1;i<lim;i++)to[i]=((to[i>>1]>>1)|((i&1)<<(l-1)));
    ntt(a,lim,1),ntt(b,lim,1);
    for(int i=0;i<lim;i++)c[i]=a[i]*b[i]%MOD;
    ntt(c,lim,-1);
    ll inv = fastpow(lim,MOD-2);
    for(int i=0;i<lim;i++)c[i]=c[i]*inv%MOD;
    for(int i=0;i<=n+m;i++)printf("%lld ",c[i]);
    puts("");
    return 0;
}

FFT:

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define N 2000050
#define ll long long
const double Pi = acos(-1.0);
template<typename T>
inline void read(T&x)
{
    T f=1,c=0;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){c=10*c+ch-'0';ch=getchar();}
    x = f*c;
}
struct cp
{
    double x,y;
    cp(){}
    cp(double x,double y):x(x),y(y){}
};
cp operator + (cp &a,cp &b)
{
    return cp(a.x+b.x,a.y+b.y);
}
cp operator - (cp &a,cp &b)
{
    return cp(a.x-b.x,a.y-b.y);
}
cp operator * (cp &a,cp &b)
{
    return cp(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
int n,m,mx,to[2*N],lim=1,l;
void fft(cp *a,int len,int k)
{
    for(int i=0;i<len;i++)
        if(i<to[i])swap(a[i],a[to[i]]);
    for(int i=1;i<len;i<<=1)
    {
        cp w0(cos(Pi/i),k*sin(Pi/i));
        for(int j=0;j<len;j+=(i<<1))
        {
            cp w(1,0);
            for(int o=0;o<i;o++,w=w*w0)
            {
                cp w1 = a[j+o],w2 = a[j+o+i]*w;
                a[j+o] = w1+w2;
                a[j+o+i] = w1-w2;
            }
        }
    }
}
cp a[2*N],b[2*N],c[2*N];
int main()
{
    read(n),read(m);mx = max(n,m);
    for(int i=0;i<=n;i++)read(a[i].x);
    for(int i=0;i<=m;i++)read(b[i].x);
    while(lim<=2*mx)lim<<=1,l++;
    for(int i=1;i<lim;i++)to[i]=((to[i>>1]>>1)|((i&1)<<(l-1)));
    fft(a,lim,1),fft(b,lim,1);
    for(int i=0;i<lim;i++)c[i]=a[i]*b[i];
    fft(c,lim,-1);
    for(int i=0;i<=n+m;i++)
        printf("%lld ",(ll)(c[i].x/lim+0.5));
    puts("");
    return 0;
}

 

转载于:https://www.cnblogs.com/LiGuanlin1124/p/10258662.html

内容概要:该研究通过在黑龙江省某示范村进行24小时实地测试,比较了燃煤炉具与自动/手动进料生物质炉具的污染物排放特征。结果显示,生物质炉具相比燃煤炉具显著降低了PM2.5、CO和SO2的排放(自动进料分别降低41.2%、54.3%、40.0%;手动进料降低35.3%、22.1%、20.0%),但NOx排放未降低甚至有所增加。研究还发现,经济性和便利性是影响生物质炉具推广的重要因素。该研究不仅提供了实际排放数据支持,还通过Python代码详细复现了排放特征比较、减排效果计算和结果可视化,进一步探讨了燃料性质、动态排放特征、碳平衡计算以及政策建议。 适合人群:从事环境科学研究的学者、政府环保部门工作人员、能源政策制定者、关注农村能源转型的社会人士。 使用场景及目标:①评估生物质炉具在农村地区的推广潜力;②为政策制定者提供科学依据,优化补贴政策;③帮助研究人员深入了解生物质炉具的排放特征和技术改进方向;④为企业研发更高效的生物质炉具提供参考。 其他说明:该研究通过大量数据分析和模拟,揭示了生物质炉具在实际应用中的优点和挑战,特别是NOx排放增加的问题。研究还提出了多项具体的技术改进方向和政策建议,如优化进料方式、提高热效率、建设本地颗粒厂等,为生物质炉具的广泛推广提供了可行路径。此外,研究还开发了一个智能政策建议生成系统,可以根据不同地区的特征定制化生成政策建议,为农村能源转型提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值