[POI2007]Zap

Description
FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input
第一行包含一个正整数n,表示一共有n组询问。(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个正整数,分别为a,b,d。(1<=d<=a,b<=50000)

Output
对于每组询问,输出到输出文件zap.out一个正整数,表示满足条件的整数对数。

Sample Input
2
4 5 2
6 4 3

Sample Output
3
2

HINT
对于第一组询问,满足条件的整数对有(2,2),(2,4),(4,2)。对于第二组询问,满足条件的整数对有(6,3),(3,3)。


题解请见浅谈算法——莫比乌斯反演

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
    int x=0,f=1;char ch=getchar();
    for (;ch<'0'||ch>'9';ch=getchar())  if (ch=='-')    f=-1;
    for (;ch>='0'&&ch<='9';ch=getchar())    x=(x<<1)+(x<<3)+ch-'0';
    return x*f;
}
inline void print(int x){
    if (x>=10)     print(x/10);
    putchar(x%10+'0');
}
const int N=5e4;
int prime[N+10],miu[N+10],sum[N+10];
bool inprime[N+10];
void prepare(){
    miu[1]=1;
    int tot=0;
    for (int i=2;i<=N;i++){
        if (!inprime[i])    prime[++tot]=i,miu[i]=-1;
        for (int j=1;j<=tot&&i*prime[j]<=N;j++){
            inprime[i*prime[j]]=1;
            if (i%prime[j]==0){miu[i*prime[j]]=0;break;}
            miu[i*prime[j]]=-miu[i];
        }
    }
    for (int i=1;i<=N;i++)  sum[i]=sum[i-1]+miu[i];
}
int main(){
    prepare();
    for (int Data=read();Data;Data--){
        int A=read(),B=read(),D=read();
        ll Ans=0;
        A/=D,B/=D;
        int x=min(A,B),pos=0;
        for (int d=1;d<=x;d=pos+1){
            pos=min(A/(A/d),B/(B/d));
            Ans+=1ll*(sum[pos]-sum[d-1])*(A/d)*(B/d);
        }
        printf("%lld\n",Ans);
    }
    return 0;
}

转载于:https://www.cnblogs.com/Wolfycz/p/8893153.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值