[LeetCode] Longest Palindromic Substring

本文介绍了多种寻找字符串中最长回文子串的方法,包括二维动态规划、Manacher算法及中心扩展法等,并提供了详细的代码实现。

This problem has a long story. There are just too many solutions on the web and it can be studied for a long time before you fully grasp it. Morever, it can induce many other concepts or problems (longest palindromic subsequence, longest common substring, etc).

The simplest way to solve it is to use two-dimensional DP. We denote P[i][j] to be an indicator of whether the substring from i to j (inclusive) is a palindrome. It is obvious that the following relationships hold:

  1. P[i][i] = 1 (each character itself is palindromic);
  2. P[i][i + 1] = s[i] == s[j] (two neighboring characters are palindromic if they are the same);
  3. P[i][j] = P[i + 1][j - 1] && s[i] == s[j] (If the substring is palindrome, then adding the same character at both of its two ends still gives a palindrome).

1 and 2 are base cases and 3 is the general case.

Then we will have the following unoptimiezd DP code.

 1     string longestPalindrome(string s) {
 2         int start = 0, len = 1, n = s.length();
 3         bool dp[1000][1000] = {false};
 4         for (int i = 0; i < n; i++)
 5             dp[i][i] = true;
 6         for (int i = 0; i < n - 1; i++) {
 7             dp[i][i + 1] = s[i] == s[i + 1];
 8             if (dp[i][i + 1]) {
 9                 start = i;
10                 len = 2;
11             }
12         }
13         for (int l = 3; l <= n; l++) {
14             for (int i = 0; i < n - l + 1; i++) {
15                 int j = i + l - 1;
16                 dp[i][j] = dp[i + 1][j - 1] && s[i] == s[j];
17                 if (dp[i][j]) {
18                     start = i;
19                     len = l;
20                 }
21             }
22         }
23         return s.substr(start, len);
24     }

Note that each time when we update dp[i][j], we only need dp[i + 1][j - 1] from the left column, so we can maintain a single variable for it and reduce the space complexity from O(n^2) to O(n). The code now becomes as follows.

 1     string longestPalindrome(string s) {
 2         int start = 0, len = 1, n = s.length();
 3         bool cur[1000] = {false};
 4         bool pre;
 5         cur[0] = true;
 6         for (int j = 1; j < n; j++) {
 7             cur[j] = true;
 8             pre = cur[j - 1];
 9             cur[j - 1] = s[j - 1] == s[j];
10             if (cur[j - 1] && len < 2) {
11                 start = j - 1;
12                 len = 2;
13             }
14             for (int i = j - 2; i >= 0; i--) {
15                 bool temp = cur[i];
16                 cur[i] = pre && s[i] == s[j];
17                 if (cur[i] && j - i + 1 > len) {
18                     start = i;
19                     len = j - i + 1;
20                 }
21                 pre = temp;
22             }
23         }
24         return s.substr(start, len);
25     }

We may also traverse the string and expand to left and right from any character to obtain the longest palindrome. The following code should be self-explanatory.

 1     string search(string s, int left, int right) {
 2         int l = left, r = right;
 3         while (l >= 0 && r < s.length() && s[l] == s[r]) {
 4             l--;
 5             r++;
 6         }
 7         return s.substr(l + 1, r - l - 1);
 8     }
 9     
10     string longestPalindrome(string s) {
11         string longest = s.substr(0, 1);
12         for (int i = 0; i < s.length() - 1; i++) {
13             string tmp1 = search(s, i, i);
14             string tmp2 = search(s, i, i + 1);
15             if (tmp1.length() > longest.length()) longest = tmp1;
16             if (tmp2.length() > longest.length()) longest = tmp2;
17         }
18         return longest;
19     }

Of course, this problem still has a non-trivial O(n) algorithm, named Manacher's algorithm. This page has a nice explanation for it. The final code is shown below.

 1     string process(string s) {
 2         int n = s.length();
 3         string t(2 * n + 3, '#');
 4         t[0] = '$';
 5         t[2 * n + 2] = '%';
 6         for (int i = 0; i < n; i++)
 7             t[2 * (i + 1)] = s[i];
 8         return t;
 9     }
10     
11     string longestPalindrome(string s) {
12         string t = process(s);
13         int n = t.length();
14         int* plen = new int[n]();
15         int center = 0, right = 0;
16         for (int i = 1; i < n - 1; i++) {
17             int i_mirror = 2 * center - i;
18             plen[i] = right > i ? min(plen[i_mirror], right - i) : 0;
19             while (t[i + plen[i] + 1] == t[i - plen[i] - 1])
20                 plen[i]++;
21             if (i + plen[i] > right) {
22                 center = i;
23                 right = i + plen[i];
24             }
25         }
26         int maxlen = 0;
27         for (int i = 1; i < n - 1; i++) {
28             if (plen[i] > maxlen) {
29                 center = i;
30                 maxlen = plen[i];
31             }
32         }
33         delete[] plen;
34         return s.substr((center - 1 - maxlen) / 2, maxlen);
35     }

转载于:https://www.cnblogs.com/jcliBlogger/p/4562069.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值