A Simple make file tutorial

本文提供了一个简易的Makefile指南,旨在帮助初学者快速且容易地为小型到中型项目创建Makefile。通过使用Makefile,可以避免重复输入编译命令,并实现仅编译最新更改的功能。教程包括了从基本用法到更高级配置的逐步指导,如定义常量、依赖性处理及目录结构管理。


A Simple Makefile Tutorial

Makefiles are a simple way to organize code compilation. This tutorial does not even scratch the surface of what is possible using make, but is intended as a starters guide so that you can quickly and easily create your own makefiles for small to medium-sized projects.
A Simple Example

Let's start off with the following three files, hellomake.c, hellofunc.c, and hellomake.h, which would represent a typical main program, some functional code in a separate file, and an include file, respectively.
hellomake.c hellofunc.c hellomake.h

#include <hellomake.h>

int main() {
  // call a function in another file
  myPrintHelloMake();

  return(0);
}

 

#include <stdio.h>
#include <hellomake.h>

void myPrintHelloMake(void) {

  printf("Hello makefiles!\n");

  return;
}

 

/*
example include file
*/

void myPrintHelloMake(void);

Normally, you would compile this collection of code by executing the following command:

gcc -o hellomake hellomake.c hellofunc.c -I.

This compiles the two .c files and names the executable hellomake. The -I. is included so that gcc will look in the current directory (.) for the include file hellomake.h. Without a makefile, the typical approach to the test/modify/debug cycle is to use the up arrow in a terminal to go back to your last compile command so you don't have to type it each time, especially once you've added a few more .c files to the mix.

Unfortunately, this approach to compilation has two downfalls. First, if you lose the compile command or switch computers you have to retype it from scratch, which is inefficient at best. Second, if you are only making changes to one .c file, recompiling all of them every time is also time-consuming and inefficient. So, it's time to see what we can do with a makefile.

The simplest makefile you could create would look something like:
Makefile 1

hellomake: hellomake.c hellofunc.c
     gcc -o hellomake hellomake.c hellofunc.c -I.

If you put this rule into a file called Makefile or makefile and then type make on the command line it will execute the compile command as you have written it in the makefile. Note that make with no arguments executes the first rule in the file. Furthermore, by putting the list of files on which the command depends on the first line after the :, make knows that the rule hellomake needs to be executed if any of those files change. Immediately, you have solved problem #1 and can avoid using the up arrow repeatedly, looking for your last compile command. However, the system is still not being efficient in terms of compiling only the latest changes.

One very important thing to note is that there is a tab before the gcc command in the makefile. There must be a tab at the beginning of any command, and make will not be happy if it's not there.

In order to be a bit more efficient, let's try the following:
Makefile 2

CC=gcc
CFLAGS=-I.

hellomake: hellomake.o hellofunc.o
     $(CC) -o hellomake hellomake.o hellofunc.o -I.

So now we've defined some constants CC and CFLAGS. It turns out these are special constants that communicate to make how we want to compile the files hellomake.c and hellofunc.c. In particular, the macro CC is the C compiler to use, and CFLAGS is the list of flags to pass to the compilation command. By putting the object files--hellomake.o and hellofunc.o--in the dependency list and in the rule, make knows it must first compile the .c versions individually, and then build the executable hellomake.

Using this form of makefile is sufficient for most small scale projects. However, there is one thing missing: dependency on the include files. If you were to make a change to hellomake.h, for example, make would not recompile the .c files, even though they needed to be. In order to fix this, we need to tell make that all .c files depend on certain .h files. We can do this by writing a simple rule and adding it to the makefile.
Makefile 3

CC=gcc
CFLAGS=-I.
DEPS = hellomake.h

%.o: %.c $(DEPS)
 $(CC) -c -o $@ $< $(CFLAGS)

hellomake: hellomake.o hellofunc.o
 gcc -o hellomake hellomake.o hellofunc.o -I.

This addition first creates the macro DEPS, which is the set of .h files on which the .c files depend. Then we define a rule that applies to all files ending in the .o suffix. The rule says that the .o file depends upon the .c version of the file and the .h files included in the DEPS macro. The rule then says that to generate the .o file, make needs to compile the .c file using the compiler defined in the CC macro. The -c flag says to generate the object file, the -o $@ says to put the output of the compilation in the file named on the left side of the :, the $< is the first item in the dependencies list, and the CFLAGS macro is defined as above.

As a final simplification, let's use the special macros $@ and $^, which are the left and right sides of the :, respectively, to make the overall compilation rule more general. In the example below, all of the include files should be listed as part of the macro DEPS, and all of the object files should be listed as part of the macro OBJ.
Makefile 4

CC=gcc
CFLAGS=-I.
DEPS = hellomake.h
OBJ = hellomake.o hellofunc.o

%.o: %.c $(DEPS)
 $(CC) -c -o $@ $< $(CFLAGS)

hellomake: $(OBJ)
 gcc -o $@ $^ $(CFLAGS)

So what if we want to start putting our .h files in an include directory, our source code in a src directory, and some local libraries in a lib directory? Also, can we somehow hide those annoying .o files that hang around all over the place? The answer, of course, is yes. The following makefile defines paths to the include and lib directories, and places the object files in an obj subdirectory within the src directory. It also has a macro defined for any libraries you want to include, such as the math library -lm. This makefile should be located in the src directory. Note that it also includes a rule for cleaning up your source and object directories if you type make clean. The .PHONY rule keeps make from doing something with a file named clean.
Makefile 5

IDIR =../include
CC=gcc
CFLAGS=-I$(IDIR)

ODIR=obj
LDIR =../lib

LIBS=-lm

_DEPS = hellomake.h
DEPS = $(patsubst %,$(IDIR)/%,$(_DEPS))

_OBJ = hellomake.o hellofunc.o
OBJ = $(patsubst %,$(ODIR)/%,$(_OBJ))


$(ODIR)/%.o: %.c $(DEPS)
 $(CC) -c -o $@ $< $(CFLAGS)

hellomake: $(OBJ)
 gcc -o $@ $^ $(CFLAGS) $(LIBS)

.PHONY: clean

clean:
 rm -f $(ODIR)/*.o *~ core $(INCDIR)/*~

So now you have a perfectly good makefile that you can modify to manage small and medium-sized software projects. You can add multiple rules to a makefile; you can even create rules that call other rules. For more information on makefiles and the make function, check out the GNU Make Manual, which will tell you more than you ever wanted to know (really).

转载于:https://www.cnblogs.com/SillyFlame/p/5135113.html

The Network Simulator, Version 3 -------------------------------- Table of Contents: ------------------ 1) An overview 2) Building ns-3 3) Running ns-3 4) Getting access to the ns-3 documentation 5) Working with the development version of ns-3 Note: Much more substantial information about ns-3 can be found at http://www.nsnam.org 1) An Open Source project ------------------------- ns-3 is a free open source project aiming to build a discrete-event network simulator targeted for simulation research and education. This is a collaborative project; we hope that the missing pieces of the models we have not yet implemented will be contributed by the community in an open collaboration process. The process of contributing to the ns-3 project varies with the people involved, the amount of time they can invest and the type of model they want to work on, but the current process that the project tries to follow is described here: http://www.nsnam.org/developers/contributing-code/ This README excerpts some details from a more extensive tutorial that is maintained at: http://www.nsnam.org/documentation/latest/ 2) Building ns-3 ---------------- The code for the framework and the default models provided by ns-3 is built as a set of libraries. User simulations are expected to be written as simple programs that make use of these ns-3 libraries. To build the set of default libraries and the example programs included in this package, you need to use the tool 'waf'. Detailed information on how use waf is included in the file doc/build.txt However, the real quick and dirty way to get started is to type the command ./waf configure --enable-examples followed by ./waf in the the directory which contains this README file. The files built will be copied in the build/ directory. The current codebase is expected to build and run on the set of platforms listed in the RELEASE_NOTES file. Other platforms may or may not work: we welcome patches to improve the portability of the code to these other platforms. 3) Running ns-3 --------------- On recent Linux systems, once you have built ns-3 (with examples enabled), it should be easy to run the sample programs with the following command, such as: ./waf --run simple-global-routing That program should generate a simple-global-routing.tr text trace file and a set of simple-global-routing-xx-xx.pcap binary pcap trace files, which can be read by tcpdump -tt -r filename.pcap The program source can be found in the examples/routing directory. 4) Getting access to the ns-3 documentation ------------------------------------------- Once you have verified that your build of ns-3 works by running the simple-point-to-point example as outlined in 4) above, it is quite likely that you will want to get started on reading some ns-3 documentation. All of that documentation should always be available from the ns-3 website: http:://www.nsnam.org/documentation/. This documentation includes: - a tutorial - a reference manual - models in the ns-3 model library - a wiki for user-contributed tips: http://www.nsnam.org/wiki/ - API documentation generated using doxygen: this is a reference manual, most likely not very well suited as introductory text: http://www.nsnam.org/doxygen/index.html 5) Working with the development version of ns-3 ----------------------------------------------- If you want to download and use the development version of ns-3, you need to use the tool 'mercurial'. A quick and dirty cheat sheet is included in doc/mercurial.txt but reading through the mercurial tutorials included on the mercurial website is usually a good idea if you are not familiar with it. If you have successfully installed mercurial, you can get a copy of the development version with the following command: "hg clone http://code.nsnam.org/ns-3-dev"
03-08
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值